376 research outputs found
LUX -- A Laser-Plasma Driven Undulator Beamline
The LUX beamline is a novel type of laser-plasma accelerator. Building on the
joint expertise of the University of Hamburg and DESY the beamline was
carefully designed to combine state-of-the-art expertise in laser-plasma
acceleration with the latest advances in accelerator technology and beam
diagnostics. LUX introduces a paradigm change moving from single-shot
demonstration experiments towards available, stable and controllable
accelerator operation. Here, we discuss the general design concepts of LUX and
present first critical milestones that have recently been achieved, including
the generation of electron beams at the repetition rate of up to 5 Hz with
energies above 600 MeV and the generation of spontaneous undulator radiation at
a wavelength well below 9 nm.Comment: submitte
Flourescent liquid pyrene derivative-in-water mircoemulsions
A fluorescent liquid pyrene derivative with a high fluorescence quantum yield (65%) in the bulk state is reported. With this as the sole oil phase, stable luminescent oil-in-water microemulsions have been prepared. Increasing the loading of liquid pyrene swells the droplets, as detected by small-angle neutron scattering. These larger droplets have a greater proportion of pyrene excimer emission contribution in their photoluminescence spectra, which leads to a red shift in the chromaticity of the emission
Death effector domain-containing protein induces vulnerability to cell cycle inhibition in triple-negative breast cancer
Lacking targetable molecular drivers, triple-negative breast cancer (TNBC) is the most clinically challenging subtype of breast cancer. In this study, we reveal that Death Effector Domain-containing DNA-binding protein (DEDD), which is overexpressed in > 60% of TNBCs, drives a mitogen-independent G1/S cell cycle transition through cytoplasm localization. The gain of cytosolic DEDD enhances cyclin D1 expression by interacting with heat shock 71 kDa protein 8 (HSC70). Concurrently, DEDD interacts with Rb family proteins and promotes their proteasome-mediated degradation. DEDD overexpression renders TNBCs vulnerable to cell cycle inhibition. Patients with TNBC have been excluded from CDK 4/6 inhibitor clinical trials due to the perceived high frequency of Rb-loss in TNBCs. Interestingly, our study demonstrated that, irrespective of Rb status, TNBCs with DEDD overexpression exhibit a DEDD-dependent vulnerability to combinatorial treatment with CDK4/6 inhibitor and EGFR inhibitor in vitro and in vivo. Thus, our study provided a rationale for the clinical application of CDK4/6 inhibitor combinatorial regimens for patients with TNBC
Delayed electron emission in strong-field driven tun-nelling from a metallic nanotip in the multi-electronregime
Illuminating a nano-sized metallic tip with ultrashort laser pulses leads to the emission of electrons due to multiphoton excitations. As optical fields become stronger, tunnelling emission directly from the Fermi level becomes prevalent. This can generate coherent electron waves in vacuum leading to a variety of attosecond phenomena. Working at high emission currents where multi-electron effects are significant, we were able to characterize the transition from one regime to the other. Specifically, we found that the onset of laser-driven tunnelling emission is heralded by the appearance of a peculiar delayed emission channel. In this channel, the electrons emitted via laser-driven tunnelling emission are driven back into the metal, and some of the electrons reappear in the vacuum with some delay time after undergoing inelastic scattering and cascading processes inside the metal. Our understanding of these processes gives insights on attosecond tunnelling emission from solids and should prove useful in designing new types of pulsed electron sources.111410Ysciescopu
Lateral Gene Expression in Drosophila Early Embryos Is Supported by Grainyhead-Mediated Activation and Tiers of Dorsally-Localized Repression
The general consensus in the field is that limiting amounts of the transcription factor Dorsal establish dorsal boundaries of genes expressed along the dorsal-ventral (DV) axis of early Drosophila embryos, while repressors establish ventral boundaries. Yet recent studies have provided evidence that repressors act to specify the dorsal boundary of intermediate neuroblasts defective (ind), a gene expressed in a stripe along the DV axis in lateral regions of the embryo. Here we show that a short 12 base pair sequence (“the A-box”) present twice within the ind CRM is both necessary and sufficient to support transcriptional repression in dorsal regions of embryos. To identify binding factors, we conducted affinity chromatography using the A-box element and found a number of DNA-binding proteins and chromatin-associated factors using mass spectroscopy. Only Grainyhead (Grh), a CP2 transcription factor with a unique DNA-binding domain, was found to bind the A-box sequence. Our results suggest that Grh acts as an activator to support expression of ind, which was surprising as we identified this factor using an element that mediates dorsally-localized repression. Grh and Dorsal both contribute to ind transcriptional activation. However, another recent study found that the repressor Capicua (Cic) also binds to the A-box sequence. While Cic was not identified through our A-box affinity chromatography, utilization of the same site, the A-box, by both factors Grh (activator) and Cic (repressor) may also support a “switch-like” response that helps to sharpen the ind dorsal boundary. Furthermore, our results also demonstrate that TGF-β signaling acts to refine ind CRM expression in an A-box independent manner in dorsal-most regions, suggesting that tiers of repression act in dorsal regions of the embryo
Wannier-function description of the electronic polarization and infrared absorption of high-pressure hydrogen
We have constructed maximally-localized Wannier functions for prototype
structures of solid molecular hydrogen under pressure, starting from LDA and
tight-binding Bloch wave functions. Each occupied Wannier function can be
associated with two paired protons, defining a ``Wannier molecule''. The sum of
the dipole moments of these ``molecules'' always gives the correct macroscopic
polarization, even under strong compression, when the overlap between nearby
Wannier functions becomes significant. We find that at megabar pressures the
contributions to the dipoles arising from the overlapping tails of the Wannier
functions is very large. The strong vibron infrared absorption experimentally
observed in phase III, above ~ 150 GPa, is analyzed in terms of the
vibron-induced fluctuations of the Wannier dipoles. We decompose these
fluctuations into ``static'' and ``dynamical'' contributions, and find that at
such high densities the latter term, which increases much more steeply with
pressure, is dominant.Comment: 17 pages, two-column style with 14 postscript figures embedded. Uses
REVTEX and epsf macro
Polarization and Strong Infra-Red Activity in Compressed Solid Hydrogen
Under a pressure of ~150 GPa solid molecular hydrogen undergoes a phase
transition accompanied by a dramatic rise in infra-red absorption in the vibron
frequency range. We use the Berry's phase approach to calculate the electric
polarization in several candidate structures finding large, anisotropic dynamic
charges and strongly IR-active vibron modes. The polarization is shown to be
greatly affected by the overlap between the molecules in the crystal, so that
the commonly used Clausius-Mossotti description in terms of polarizable,
non-overlapping molecular charge densities is inadequate already at low
pressures and even more so for the compressed solid.Comment: To appear in Phys. Rev. Let
Milling as a route to porous graphitic carbons from biomass
This paper reports a simple way to produce porous graphitic carbons from a wide range of lignocellulosic biomass sources, including nut shells, softwood sawdust, seed husks and bamboo. Biomass precursors are milled and sieved to produce fine powders and are then converted to porous graphitic carbons by iron-catalysed graphitization. Graphitizing the raw (unmilled) biomass creates carbons that are diverse in their porosity and adsorption properties. This is due to the inability of the iron catalyst precursor to penetrate the structure of dense biomass material. Milling enables much more efficient impregnation of the biomass and produces carbons with homogeneous properties. Lignocellulosic biomass (particularly waste biomass) is an attractive precursor to technologically important porous graphitic carbons as it is abundant and renewable. This simple method for preparing the biomass enables a wide range of biomass sources to be used to produce carbons with homogeneous properties. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)'.</p
Heparan sulfate proteoglycans: structure, protein interactions and cell signaling
Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.Proteoglicanos de heparam sulfato são encontrados tanto superfície celular quanto na matriz extracelular em todas as espécies animais. Esta revisão tem enfoque nas características estruturais dos proteoglicanos de heparam sulfato e nas interações destes proteoglicanos com proteínas que levam à sinalização celular. As cadeias de heparam sulfato, devido a sua variedade estrutural, são capazes de se ligar e interagir com ampla gama de proteínas, como fatores de crescimento, quimiocinas, morfógenos, componentes da matriz extracelular, enzimas, entreoutros. Existe uma especificidade estrutural que direciona as interações dos heparam sulfatos e proteínas alvo. Esta especificidade está relacionada com a estrutura da cadeia do polissacarídeo e os motivos conservados da cadeia polipeptídica das proteínas envolvidas nesta interação. Os heparam sulfatos possuem papel na sinalização celular como receptores ou coreceptores para diferentes ligantes. Esta ligação dispara vias de sinalização celular levam à fosforilação de diversas proteínas citosólicas ou com ou sem interações diretas com o citoesqueleto, culminando na regulação gênica. O papel dos proteoglicanos de heparam sulfato na sinalização celular e vias de captação endocítica também são discutidas nesta revisão.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Federal de São Paulo (UNIFESP) Departamento de BioquímicaUniversidade Federal de São Paulo (UNIFESP) Departamento de OftalmologiaUNIFESP, Depto. de BioquímicaUNIFESP, Depto. de OftalmologiaSciEL
- …
