31,040 research outputs found
Low-energy local density of states of the 1D Hubbard model
We examine the local density of states (DOS) at low energies numerically and
analytically for the Hubbard model in one dimension. The eigenstates represent
separate spin and charge excitations with a remarkably rich structure of the
local DOS in space and energy. The results predict signatures of strongly
correlated excitations in the tunneling probability along finite quantum wires,
such as carbon nanotubes, atomic chains or semiconductor wires in scanning
tunneling spectroscopy (STS) experiments. However, the detailed signatures can
only be partly explained by standard Luttinger liquid theory. In particular, we
find that the effective boundary exponent can be negative in finite wires,
which leads to an increase of the local DOS near the edges in contrast to the
established behavior in the thermodynamic limit.Comment: 6 pages, 4 figures, more information can be found at
http://www.physik.uni-kl.de/eggert/papers/index.htm
Universal features in sequential and nonsequential two-photon double ionization of helium
We analyze two-photon double ionization of helium in both the nonsequential
and sequential regime. We show that the energy spacing between the two emitted
electrons provides the key parameter that controls both the energy and the
angular distribution and reveals the universal features present in both the
nonsequential and sequential regime. This universality, i.e., independence of
photon energy, is a manifestation of the continuity across the threshold for
sequential double ionization. For all photon energies, the energy distribution
can be described by a universal shape function that contains only the spectral
and temporal information entering second-order time-dependent perturbation
theory. Angular correlations and distributions are found to be more sensitive
to the photon energy. In particular, shake-up interferences have a large effect
on the angular distribution. Energy spectra, angular distributions
parameterized by the anisotropy parameters, and total cross sections presented
in this paper are obtained by fully correlated time-dependent ab initio
calculations.Comment: 12 pages, 8 figure
Transgendered in Alaska: Navigating the Changing Legal Landscape for Change in Gender Petitions
Background: Detecting intracellular bacterial symbionts can be challenging when they persist at very low densities. Wolbachia, a widespread bacterial endosymbiont of invertebrates, is particularly challenging. Although it persists at high titers in many species, in others its densities are far below the detection limit of classic end-point Polymerase Chain Reaction (PCR). These low-titer infections can be reliably detected by combining PCR with DNA hybridization, but less elaborate strategies based on end-point PCR alone have proven less sensitive or less general. Results: We introduce a multicopy PCR target that allows fast and reliable detection of A-supergroup Wolbachia -even at low infection titers -with standard end-point PCR. The target is a multicopy motif (designated ARM: A-supergroup repeat motif) discovered in the genome of wMel (the Wolbachia in Drosophila melanogaster). ARM is found in at least seven other Wolbachia A-supergroup strains infecting various Drosophila, the wasp Muscidifurax and the tsetse fly Glossina. We demonstrate that end-point PCR targeting ARM can reliably detect both high-and low-titer Wolbachia infections in Drosophila, Glossina and interspecific hybrids. Conclusions: Simple end-point PCR of ARM facilitates detection of low-titer Wolbachia A-supergroup infections. Detecting these infections previously required more elaborate procedures. Our ARM target seems to be a general feature of Wolbachia A-supergroup genomes, unlike other multicopy markers such as insertion sequences (IS)
Probing Electron Correlation via Attosecond XUV Pulses in the Two-Photon Double Ionization of Helium
Recent experimental developments of high-intensity, short-pulse XUV light
sources are enhancing our ability to study electron-electron correlations. We
perform time-dependent calculations to investigate the so-called "sequential"
regime (photon energy above 54.4 eV) in the two-photon double ionization of
helium. We show that attosecond pulses allow to induce and probe angular and
energy correlations of the emitted electrons. The final momentum distribution
reveals regions dominated by the Wannier ridge break-up scenario and by
post-collision interaction.Comment: 4 pages, 5 figure
Anomalous Expansion of Attractively Interacting Fermionic Atoms in an Optical Lattice
Strong correlations can dramatically modify the thermodynamics of a quantum
many-particle system. Especially intriguing behaviour can appear when the
system adiabatically enters a strongly correlated regime, for the interplay
between entropy and strong interactions can lead to counterintuitive effects. A
well known example is the so-called Pomeranchuk effect, occurring when liquid
3He is adiabatically compressed towards its crystalline phase. Here, we report
on a novel anomalous, isentropic effect in a spin mixture of attractively
interacting fermionic atoms in an optical lattice. As we adiabatically increase
the attraction between the atoms we observe that the gas, instead of
contracting, anomalously expands. This expansion results from the combination
of two effects induced by pair formation in a lattice potential: the
suppression of quantum fluctuations as the attraction increases, which leads to
a dominant role of entropy, and the progressive loss of the spin degree of
freedom, which forces the gas to excite additional orbital degrees of freedom
and expand to outer regions of the trap in order to maintain the entropy. The
unexpected thermodynamics we observe reveal fundamentally distinctive features
of pairing in the fermionic Hubbard model.Comment: 6 pages (plus appendix), 6 figure
Discovery of a Galaxy Cluster via Weak Lensing
We report the discovery of a cluster of galaxies via its weak gravitational
lensing effect on background galaxies, the first spectroscopically confirmed
cluster to be discovered through its gravitational effects rather than by its
electromagnetic radiation. This fundamentally different selection mechanism
promises to yield mass-selected, rather than baryon or photon-selected, samples
of these important cosmological probes. We have confirmed this cluster with
spectroscopic redshifts of fifteen members at z=0.276, with a velocity
dispersion of 615 km/s. We use the tangential shear as a function of source
photometric redshift to estimate the lens redshift independently and find z_l =
0.30 +- 0.08. The good agreement with the spectroscopy indicates that the
redshift evolution of the mass function may be measurable from the imaging data
alone in shear-selected surveys.Comment: revised version with minor changes, to appear in ApJ
Magnetic field induced 3D to 1D crossover in type II superconductors
We review and analyze magnetization and specific heat investigations on
type-II superconductors which uncover remarkable evidence for the magnetic
field induced fnite size effect and the associated 3D to 1D crossover which
enhances thermal fluctuations.Comment: 26 pages, 19 figure
The Arecibo Galaxy Environments survey IV: the NGC7448 region and the HI mass function
In this paper we describe results from the Arecibo Galaxy Environments Survey
(AGES). The survey reaches column densities of ~3x10^18 cm^-2 and masses of
~10^7 M_O, over individual regions of order 10 sq deg in size, out to a maximum
velocity of 18,000 km s^-1. Each surveyed region is centred on a nearby galaxy,
group or cluster, in this instance the NGC7448 group. Galaxy interactions in
the NGC7448 group reveal themselves through the identification of tidal tails
and bridges. We find ~2.5 times more atomic gas in the inter-galactic medium
than in the group galaxies. We identify five new dwarf galaxies, two of which
appear to be members of the NGC7448 group. This is too few, by roughly an order
of magnitude, dwarf galaxies to reconcile observation with theoretical
predictions of galaxy formation models. If they had observed this region of sky
previous wide area blind HI surveys, HIPASS and ALFALFA, would have detected
only 5% and 43% respectively of the galaxies we detect, missing a large
fraction of the atomic gas in this volume. We combine the data from this paper
with that from our other AGES papers (370 galaxies) to derive a HI mass
function with the following Schechter function parameters alpha=-1.52+/-0.05,
M^*=5.1+/-0.3x10^9 h_72^-2 M_O, phi=8.6+/-1.1x10-3 h_72^3 Mpc^-3 dex-1.
Integrating the mass function leads to a cosmic mass density of atomic hydrogen
of Omega_HI=5.3+/-0.8x10^-4 h_72^-1. Our mass function is steeper than that
found by both HIPASS and ALFALFA (alpha=1.37 and 1.33 respectively), while our
cosmic mass density is consistent with ALFALFA, but 1.7 times larger than found
by HIPASS
Mutual Event Observations of Io's Sodium Corona
We have measured the column density profile of Io's sodium corona using 10 mutual eclipses between the Galilean satellites. This approach circumvents the problem of spatially resolving Io's corona directly from Io's bright continuum in the presence of atmospheric seeing and telescopic scattering. The primary goal is to investigate the spatial and temporal variations of Io's corona. Spectra from the Keck Observatory and McDonald Observatory from 1997 reveal a corona that is only approximately spherically symmetric around Io. Comparing the globally averaged radial sodium column density profile in the corona with profiles measured in 1991 and 1985, we find that there has been no significant variation. However, there appears to be a previously undetected asymmetry: the corona above Io's sub-Jupiter hemisphere is consistently more dense than above the anti-Jupiter hemisphere
- …