12 research outputs found

    Association of Bartonella spp bacteremia with Chagas cardiomyopathy, endocarditis and arrythmias in patients from South America

    Get PDF
    Infection with Bartonella spp may cause cardiac arrhythmias, myocarditis and endocarditis in humans. The aim of the present study was to evaluate a possible association between Bartonella spp bacteremia and endocarditis, arrhythmia and Chagas cardiomyopathy in patients from Brazil and Argentina. We screened for the presence of bacterial 16S rRNA in human blood by PCR using oligonucleotides to amplify a 185-bp bacterial DNA fragment. Blood samples were taken from four groups of subjects in Brazil and Argentina: i) control patients without clinical disease, ii) patients with negative blood-culture endocarditis, iii) patients with arrhythmias, and iv) patients with chronic Chagas cardiomyopathy. PCR products were analyzed on 1.5% agarose gel to visualize the 185-bp fragment and then sequenced to confirm the identity of DNA. Sixty of 148 patients (40.5%) with cardiac disease and 1 of 56 subjects (1.8%) from the control group presented positive PCR amplification for Bartonella spp, suggesting a positive association of the bacteria with these diseases. Separate analysis of the four groups showed that the risk of a Brazilian patient with endocarditis being infected with Bartonella was 22 times higher than in the controls. In arrhythmic patients, the prevalence of infection was 45 times higher when compared to the same controls and 40 times higher for patients with Chagas cardiomyopathy. To the best of our knowledge this is the first report of the association between Bartonella spp bacteremia and Chagas disease. The present data may be useful for epidemiological and prevention studies in Brazil and Argentina.64465

    Subtelomeric I-scei-mediated Double-strand Breaks Are Repaired By Homologous Recombination In Trypanosoma Cruzi

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Trypanosoma cruzi chromosome ends are enriched in surface protein genes and pseudogenes (e.g., trans-sialidases) surrounded by repetitive sequences. It has been proposed that the extensive sequence variability among members of these protein families could play a role in parasite infectivity and evasion of host immune response. In previous reports we showed evidence suggesting that sequences located in these regions are subjected to recombination. To support this hypothesis we introduced a double-strand break (DSB) at a specific target site in a T. cruzi subtelomeric region cloned into an artificial chromosome (pTAC). This construct was used to transfect T. cruzi epimastigotes expressing the I-SceI meganuclease. Examination of the repaired sequences showed that DNA repair occurred only through homologous recombination (HR) with endogenous subtelomeric sequences. Our findings suggest that DSBs in subtelomeric repetitive sequences followed by HR between them may contribute to increased variability in T. cruzi multigene families. © 2016 Chiurillo, Moraes Barros, Souza, Marini, Antonio, Cortez, Curto, Lorenzi, Schijman, Ramirez and da Silveira.7DEC11/51475-3, FAPESP, Fundação de Amparo à Pesquisa do Estado de São Paulo11/51693-0, FAPESP, Fundação de Amparo à Pesquisa do Estado de São Paulo306591/2015-4, CNPq, Conselho Nacional de Desenvolvimento Científico e TecnológicoFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Discrete typing units of Trypanosoma cruzi identified in rural dogs and cats in the humid Argentinean Chaco

    No full text
    The discrete typing units (DTUs) of Trypanosoma cruzi that infect domestic dogs and cats have rarely been studied.With this purpose we conducted a cross-sectional xenodiagnostic survey of dog and cat populations residing in 2 infested rural villages in Pampa del Indio, in the humid Argentine Chaco. Parasites were isolated by culture from 44 dogs and 12 cats with a positive xenodiagnosis. DTUs were identified from parasite culture samples using a strategy based on multiple polymerase-chain reactions. TcVI was identified in 37 of 44 dogs and in 10 of 12 cats, whereas TcV was identified in 5 dogs and in 2 cats –a new finding for cats. No mixed infections were detected. The occurrence of 2 dogs infected with TcIII – classically found in armadillos– suggests a probable link with the local sylvatic transmission cycle involving Dasypus novemcinctus armadillos and a potential risk of human infection with TcIII. Our study reinforces the importance of dogs and cats as domestic reservoir hosts and sources of various DTUs infecting humans, and suggests a link between dogs and the sylvatic transmission cycle of TcIII

    Association of Bartonella spp bacteremia with Chagas cardiomyopathy, endocarditis and arrythmias in patients from South America

    No full text
    Infection with Bartonella spp may cause cardiac arrhythmias, myocarditis and endocarditis in humans. The aim of the present study was to evaluate a possible association between Bartonella spp bacteremia and endocarditis, arrhythmia and Chagas cardiomyopathy in patients from Brazil and Argentina. We screened for the presence of bacterial 16S rRNA in human blood by PCR using oligonucleotides to amplify a 185-bp bacterial DNA fragment. Blood samples were taken from four groups of subjects in Brazil and Argentina: i) control patients without clinical disease, ii) patients with negative blood-culture endocarditis, iii) patients with arrhythmias, and iv) patients with chronic Chagas cardiomyopathy. PCR products were analyzed on 1.5% agarose gel to visualize the 185-bp fragment and then sequenced to confirm the identity of DNA. Sixty of 148 patients (40.5%) with cardiac disease and 1 of 56 subjects (1.8%) from the control group presented positive PCR amplification for Bartonella spp, suggesting a positive association of the bacteria with these diseases. Separate analysis of the four groups showed that the risk of a Brazilian patient with endocarditis being infected with Bartonella was 22 times higher than in the controls. In arrhythmic patients, the prevalence of infection was 45 times higher when compared to the same controls and 40 times higher for patients with Chagas cardiomyopathy. To the best of our knowledge this is the first report of the association between Bartonella spp bacteremia and Chagas disease. The present data may be useful for epidemiological and prevention studies in Brazil and Argentina

    Genetic polymorphisms of IL17A associated with Chagas disease: results from a meta-analysis in Latin American populations

    Get PDF
    Genetic factors and the immunologic response have been suggested to determine the susceptibility against the infection and the outcome of Chagas disease. In the present study, we analysed three IL17A genetic variants (rs4711998, rs8193036 and rs2275913) regarding the predisposition to Trypanosoma cruzi infection and the development of chronic Chagas cardiomyopathy (CCC) in different Latin American populations. A total of 2,967 individuals from Colombia, Argentina, Bolivia and Brazil, were included in this study. The individuals were classified as seronegative and seropositive for T. cruzi antigens, and this last group were divided into asymptomatic and CCC. For T. cruzi infection susceptibility, the IL17A rs2275913*A showed a significant association in a fixed-effect meta-analysis after a Bonferroni correction (P = 0.016, OR = 1.21, 95%CI = 1.06–1.41). No evidence of association was detected when comparing CCC vs. asymptomatic patients. However, when CCC were compared with seronegative individuals, it showed a nominal association in the meta-analysis (P = 0.040, OR = 1.20, 95%CI = 1.01–1.45). For the IL17A rs4711998 and rs8193036, no association was observed. In conclusion, our results suggest that IL17A rs2275913 plays an important role in the susceptibility to T. cruzi infection and could also be implicated in the development of chronic cardiomyopathy in the studied Latin American population

    Supplementary Material for: Impairment in Natural Killer Cells Editing of Immature Dendritic Cells by Infection with a Virulent <b><i>Trypanosoma cruzi</i></b> Population

    No full text
    Early interactions between natural killer (NK) and dendritic cells (DC) shape the immune response at the frontier of innate and adaptive immunity. Activated NK cells participate in maturation or deletion of DCs that remain immature. We previously demonstrated that infection with a high virulence (HV) population of the protozoan parasite <i>Trypanosoma cruzi</i> downmodulates DC maturation and T-cell activation capacity. Here, we evaluated the role of NK cells in regulating the maturation level of DCs. Shortly after infection with HV <i>T. cruzi</i>, DCs in poor maturation status begin to accumulate in mouse spleen. Although infection induces NK cell cytotoxicity and cytokine production, NK cells from mice infected with HV <i>T. cruzi</i> exhibit reduced ability to lyse and fail to induce maturation of bone marrow-derived immature DCs (iDCs). NK-mediated lysis of iDCs is restored by in vitro blockade of the IL-10 receptor during NK-DC interaction or when NK cells are obtained from <i>T. cruzi</i>-infected IL-10 knockout mice. These results suggest that infection with a virulent <i>T. cruzi</i> strain alters NK cell-mediated regulation of the adaptive immune response induced by DCs. This regulatory circuit where IL-10 appears to participate might lead to parasite persistence but can also limit the induction of a vigorous tissue-damaging T-cell response

    Target product profile for a test for the early assessment of treatment efficacy in chagas disease patients: An expert consensus

    Get PDF
    descripción no proporcionada por scopusISGlobal work is supported by the Departament d’Universitats i Recerca de la Generalitat de Catalunya, Spain (AGAUR; 017SGR00924) and by the Instituto de Salud Carlos III (ISCIII) RICET Network for Cooperative Research in Tropical Diseases (ISCIII; RD16/0027/0004 - PI1290) and FEDER. MJP research is supported by the Ministry of Health, Government of Catalonia (PERIS 2016-2010 SLT008/18/00132). ICA, JG, and FT are supported by the grant number U01AI129783 from the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH). ICA is also partly supported by the grant number 5U54MD007592 from the National Institute on Minority Health and Health Disparities (NIMHD), NIH. MCL and MCT were supported by ISCIII RICET grant RD16/0027/0005 - PI1290 and FEDER and by grants SAF2016-81003-R and SAF2016-80998-R from the Spanish “Programa Estatal I+D+i (MINECO)”. AA's work was supported by the Italian Ministry of Health “Fondi Ricerca Corrente - Linea 3, progetto 9” to IRCCS Sacro Cuore Don Calabria Hospital. JR was supported by CONACyT Fossis grant #261006. The Drugs for Neglected Diseases initiative (DNDi) is grateful to its donors, public and private, who have provided funding to DNDi since its inception in 2003. A full list of DNDi's donors can be found at http://www.dndi.org/donate/donors/. FIND is grateful to its donors, public and private, who have helped bring innovative new diagnostics for diseases of poverty. A full list of FIND’s donors can be found at: https://www.finddx.org/partners-donors/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    corecore