209 research outputs found

    Regulatory feedback response mechanisms to phosphate starvation in rice

    Get PDF
    Phosphorus is a growth-limiting nutrient for plants. The growing scarcity of phosphate stocks threatens global food security. Phosphate-uptake regulation is so complex and incompletely known that attempts to improve phosphorus use efficiency have had extremely limited success. This study improves our understanding of the molecular mechanisms underlying phosphate uptake by investigating the transcriptional dynamics of two regulators: the Ubiquitin ligase PHO2 and the long non-coding RNA IPS1. Temporal measurements of RNA levels have been integrated into mechanistic mathematical models using advanced statistical techniques. Models based solely on current knowledge could not adequately explain the temporal expression profiles. Further modeling and bioinformatics analysis have led to the prediction of three regulatory features: the PHO2 protein mediates the degradation of its own transcriptional activator to maintain constant PHO2 mRNA levels; the binding affinity of the transcriptional activator of PHO2 is impaired by a phosphate-sensitive transcriptional repressor/inhibitor; and the extremely high levels of IPS1 and its rapid disappearance upon Pi re-supply are best explained by Pi-sensitive RNA protection. This work offers both new opportunities for plant phosphate research that will be essential for informing the development of phosphate efficient crop varieties, and a foundation for the development of models integrating phosphate with other stress responses

    Functional characterization of the PHT1 family transporters of foxtail millet with development of a novel Agrobacterium-mediated transformation procedure

    Get PDF
    Phosphate is an essential nutrient for plant growth and is acquired from the environment and distributed within the plant in part through the action of phosphate transporters of the PHT1 family. Foxtail millet (Setaria italica) is an orphan crop essential to the food security of many small farmers in Asia and Africa and is a model system for other millets. A novel Agrobacterium-mediated transformation and direct plant regeneration procedure was developed from shoot apex explants and used to downregulate expression of 3 members of the PHT1 phosphate transporter family SiPHT1;2 SiPHT1;3 and SiPHT1;4. Transformants were recovered with close to 10% efficiency. The downregulation of individual transporters was confirmed by RT-PCR. Downregulation of individual transporters significantly reduced the total and inorganic P contents in shoot and root tissues and increased the number of lateral roots and root hairs showing they have non-redundant roles. Downregulation of SiPHT1;2 had the strongest effect on total and inorganic P in shoot and root tissues. Complementation experiments in S. cerevisiae provide evidence for the ability of SiPHT1;1, 1;2, 1;3, 1;7 and 1;8 to function as high affinity Pi transporters. This work will aid development of improved millet varieties for global food security

    How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation?

    Get PDF
    Plants exude strigolactones (SLs) to attract symbiotic arbuscular mycorrhizal fungi in the rhizosphere. Previous studies have demonstrated that phosphorus (P) deficiency, but not nitrogen (N) deficiency, significantly promotes SL exudation in red clover, while in sorghum not only P deficiency but also N deficiency enhances SL exudation. There are differences between plant species in SL exudation under P- and N-deficient conditions, which may possibly be related to differences between legumes and non-legumes. To investigate this possibility in detail, the effects of N and P deficiencies on SL exudation were examined in Fabaceae (alfalfa and Chinese milk vetch), Asteraceae (marigold and lettuce), Solanaceae (tomato), and Poaceae (wheat) plants. In alfalfa as expected, and unexpectedly in tomato, only P deficiency promoted SL exudation. In contrast, in Chinese milk vetch, a leguminous plant, and in the other non-leguminous plants examined, N deficiency as well as P deficiency enhanced SL exudation. Distinct reductions in shoot P levels were observed in plants grown under N deficiency, except for tomato, in which shoot P level was increased by N starvation, suggesting that the P status of the shoot regulates SL exudation. There seems to be a correlation between shoot P levels and SL exudation across the species/families investigated

    Molecular Cloning, Characterization and Expression Analysis of Two Members of the Pht1 Family of Phosphate Transporters in Glycine max

    Get PDF
    BACKGROUND: Phosphorus is one of the macronutrients essential for plant growth and development. The acquisition and translocation of phosphate are pivotal processes of plant growth. In a large number of plants, phosphate uptake by roots and translocation within the plant are presumed to occur via a phosphate/proton cotransport mechanism. PRINCIPAL FINDINGS: We cloned two cDNAs from soybean (Glycine max), GmPT1 and GmPT2, which show homology to the phosphate/proton cotransporter PHO84 from the budding yeast Saccharomyces cerevisiae. The amino acid sequence of the products predicted from GmPT1 and GmPT2 share 61% and 63% identity, respectively, with the PHO84 in amino acid sequence. The deduced structure of the encoded proteins revealed 12 membrane-spanning domains with a central hydrophilic region. The molecular mass values are ∼58.7 kDa for GmPT1 and ∼58.6 kDa for GmPT2. Transiently expressed GFP-protein fusions provide direct evidence that the two Pi transporters are located in the plasma membrane. Uptake of radioactive orthophosphate by the yeast mutant MB192 showed that GmPT1 and GmPT2 are dependent on pH and uptake is reduced by the addition of uncouplers of oxidative phosphorylation. The K(m) for phosphate uptake by GmPT1 and GmPT2 is 6.65 mM and 6.63 mM, respectively. A quantitative real time RT-PCR assay indicated that these two genes are expressed in the roots and shoots of seedlings whether they are phosphate-deficient or not. Deficiency of phosphorus caused a slight change of the expression levels of GmPT1 and GmPT2. CONCLUSIONS: The results of our experiments show that the two phosphate transporters have low affinity and the corresponding genes are constitutively expressed. Thereby, the two phosphate transporters can perform translocation of phosphate within the plant

    AtHKT1;1 Mediates Nernstian Sodium Channel Transport Properties in Arabidopsis Root Stelar Cells

    Get PDF
    The Arabidopsis AtHKT1;1 protein was identified as a sodium (Na+) transporter by heterologous expression in Xenopus laevis oocytes and Saccharomyces cerevisiae. However, direct comparative in vivo electrophysiological analyses of a plant HKT transporter in wild-type and hkt loss-of-function mutants has not yet been reported and it has been recently argued that heterologous expression systems may alter properties of plant transporters, including HKT transporters. In this report, we analyze several key functions of AtHKT1;1-mediated ion currents in their native root stelar cells, including Na+ and K+ conductances, AtHKT1;1-mediated outward currents, and shifts in reversal potentials in the presence of defined intracellular and extracellular salt concentrations. Enhancer trap Arabidopsis plants with GFP-labeled root stelar cells were used to investigate AtHKT1;1-dependent ion transport properties using patch clamp electrophysiology in wild-type and athkt1;1 mutant plants. AtHKT1;1-dependent currents were carried by sodium ions and these currents were not observed in athkt1;1 mutant stelar cells. However, K+ currents in wild-type and athkt1;1 root stelar cell protoplasts were indistinguishable correlating with the Na+ over K+ selectivity of AtHKT1;1-mediated transport. Moreover, AtHKT1;1-mediated currents did not show a strong voltage dependence in vivo. Unexpectedly, removal of extracellular Na+ caused a reduction in AtHKT1;1-mediated outward currents in Columbia root stelar cells and Xenopus oocytes, indicating a role for external Na+ in regulation of AtHKT1;1 activity. Shifting the NaCl gradient in root stelar cells showed a Nernstian shift in the reversal potential providing biophysical evidence for the model that AtHKT1;1 mediates passive Na+ channel transport properties
    corecore