32 research outputs found

    Cellular Mercury Coordination Environment, and Not Cell Surface Ligands, Influence Bacterial Methylmercury Production

    Get PDF
    The conversion of inorganic mercury (Hg(II)) to methylmercury (MeHg) is central to the understanding of Hg toxicity in the environment. Hg methylation occurs in the cytosol of certain obligate anaerobic bacteria and archaea possessing the hgcAB gene cluster. However, the processes involved in Hg(II) biouptake and methylation are not well understood. Here, we examined the role of cell surface thiols, cellular ligands with the highest affinity for Hg(II) that are located at the interface between the outer membrane and external medium, on the sorption and methylation of Hg(II) by Geobacter sulfurreducens. The effect of added cysteine (Cys), which is known to greatly enhance Hg(II) biouptake and methylation, was also explored. By quantitatively blocking surface thiols with a thiol binding ligand (qBBr), we show that surface thiols have no significant effect on Hg(II) methylation, regardless of Cys addition. The results also identify a significant amount of cell-associated Hg-S₃/S₄ species, as studied by high energy-resolution X-ray absorption near edge structure (HR-XANES) spectroscopy, under conditions of high MeHg production (with Cys addition). In contrast, Hg-S₂ are the predominant species during low MeHg production. Hg-S₃/S₄ species may be related to enhanced Hg(II) biouptake or the ability of Hg(II) to become methylated by HgcAB and should be further explored in this context

    Chitosan-coated mesoporous MIL-100(Fe) nanoparticles as improved bio-compatible oral nanocarriers

    Get PDF
    Nanometric biocompatible Metal-Organic Frameworks (nanoMOFs) are promising candidates for drug delivery. Up to now, most studies have targeted the intravenous route, related to pain and severe complications; whereas nanoMOFs for oral administration, a commonly used non-invasive and simpler route, remains however unexplored. We propose here the biofriendly preparation of a suitable oral nanocarrier based on the benchmarked biocompatible mesoporous iron(III) trimesate nanoparticles coated with the bioadhesive polysaccharide chitosan (CS). This method does not hamper the textural/ structural properties and the sorption/release abilities of the nanoMOFs upon surface engineering. The interaction between the CS and the nanoparticles has been characterized through a combination of high resolution soft X-ray absorption and computing simulation, while the positive impact of the coating on the colloidal and chemical stability under oral simulated conditions is here demonstrated. Finally, the intestinal barrier bypass capability and biocompatibility of CS-coated nanoMOF have been assessed in vitro, leading to an increased intestinal permeability with respect to the noncoated material, maintaining an optimal biocompatibility. In conclusion, the preservation of the interesting physicochemical features of the CS-coated nanoMOF and their adapted colloidal stability and progressive biodegradation, together with their improved intestinal barrier bypass, make these nanoparticles a promising oral nanocarrier

    Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume

    Get PDF
    Hydrothermal venting associated with mid-ocean ridge volcanism is globally widespread. This venting is responsible for a dissolved iron flux to the ocean that is approximately equal to that associated with continental riverine runoff. For hydrothermal fluxes, it has long been assumed that most of the iron entering the oceans is precipitated in inorganic forms. However, the possibility of globally significant fluxes of iron escaping these mass precipitation events and entering open-ocean cycles is now being debated, and two recent studies suggest that dissolved organic ligands might influence the fate of hydrothermally vented metals. Here we present spectromicroscopic measurements of iron and carbon in hydrothermal plume particles at the East Pacific Rise mid-ocean ridge. We show that organic carbon-rich matrices, containing evenly dispersed iron(II)-rich materials, are pervasive in hydrothermal plume particles. The absence of discrete iron(II) particles suggests that the carbon and iron associate through sorption or complexation. We suggest that these carbon matrices stabilize iron(II) released from hydrothermal vents in the region, preventing its oxidation and/or precipitation as insoluble minerals. Our findings have implications for deep-sea biogeochemical cycling of iron, a widely recognized limiting nutrient in the oceans

    Chemically and Geographically distinct solid-phase iron pools in the Southern Ocean

    No full text
    NatuurwetenskappeAardwetenskappePlease help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]
    corecore