310 research outputs found

    The role of childhood social position in adult type 2 diabetes: Evidence from the English Longitudinal Study of Ageing

    Get PDF
    Copyright @ 2014 Pikhartova et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.This article has been made available through the Brunel Open Access Publishing Fund.Background: Socioeconomic circumstances in childhood and early adulthood may influence the later onset of chronic disease, although such research is limited for type 2 diabetes and its risk factors at the different stages of life. The main aim of the present study is to examine the role of childhood social position and later inflammatory markers and health behaviours in developing type 2 diabetes at older ages using a pathway analytic approach. Methods. Data on childhood and adult life circumstances of 2,994 men and 4,021 women from English Longitudinal Study of Ageing (ELSA) were used to evaluate their association with diabetes at age 50 years and more. The cases of diabetes were based on having increased blood levels of glycated haemoglobin and/or self-reported medication for diabetes and/or being diagnosed with type 2 diabetes. Father's job when ELSA participants were aged 14 years was used as the measure of childhood social position. Current social characteristics, health behaviours and inflammatory biomarkers were used as potential mediators in the statistical analysis to assess direct and indirect effects of childhood circumstances on diabetes in later life. Results: 12.6 per cent of participants were classified as having diabetes. A disadvantaged social position in childhood, as measured by father's manual occupation, was associated at conventional levels of statistical significance with an increased risk of type 2 diabetes in adulthood, both directly and indirectly through inflammation, adulthood social position and a risk score constructed from adult health behaviours including tobacco smoking and limited physical activity. The direct effect of childhood social position was reduced by mediation analysis (standardised coefficient decreased from 0.089 to 0.043) but remained statistically significant (p = 0.035). All three indirect pathways made a statistically significantly contribution to the overall effect of childhood social position on adulthood type 2 diabetes. Conclusions: Childhood social position influences adult diabetes directly and indirectly through inflammatory markers, adulthood social position and adult health behaviours. © 2014Pikhartova et al.; licensee BioMed Central Ltd.Economic and Social Research Council-funded International Centre for Life Course Studies in Society and Health (RES-596-28-0001)

    Soil methane sink capacity response to a long-term wildfire chronosequence in Northern Sweden

    Get PDF
    Boreal forests occupy nearly one fifth of the terrestrial land surface and are recognised as globally important regulators of carbon (C) cycling and greenhouse gas emissions. Carbon sequestration processes in these forests include assimilation of CO2 into biomass and subsequently into soil organic matter, and soil microbial oxidation of methane (CH4). In this study we explored how ecosystem retrogression, which drives vegetation change, regulates the important process of soil CH4 oxidation in boreal forests. We measured soil CH4 oxidation processes on a group of 30 forested islands in northern Sweden differing greatly in fire history, and collectively representing a retrogressive chronosequence, spanning 5000 years. Across these islands the build-up of soil organic matter was observed to increase with time since fire disturbance, with a significant correlation between greater humus depth and increased net soil CH4 oxidation rates. We suggest that this increase in net CH4 oxidation rates, in the absence of disturbance, results as deeper humus stores accumulate and provide niches for methanotrophs to thrive. By using this gradient we have discovered important regulatory controls on the stability of soil CH4 oxidation processes that could not have not been explored through shorter-term experiments. Our findings indicate that in the absence of human interventions such as fire suppression, and with increased wildfire frequency, the globally important boreal CH4 sink could be diminished

    Dispelling urban myths about default uncertainty factors in chemical risk assessment - Sufficient protection against mixture effects?

    Get PDF
    © 2013 Martin et al.; licensee BioMed Central LtdThis article has been made available through the Brunel Open Access Publishing Fund.Assessing the detrimental health effects of chemicals requires the extrapolation of experimental data in animals to human populations. This is achieved by applying a default uncertainty factor of 100 to doses not found to be associated with observable effects in laboratory animals. It is commonly assumed that the toxicokinetic and toxicodynamic sub-components of this default uncertainty factor represent worst-case scenarios and that the multiplication of those components yields conservative estimates of safe levels for humans. It is sometimes claimed that this conservatism also offers adequate protection from mixture effects. By analysing the evolution of uncertainty factors from a historical perspective, we expose that the default factor and its sub-components are intended to represent adequate rather than worst-case scenarios. The intention of using assessment factors for mixture effects was abandoned thirty years ago. It is also often ignored that the conservatism (or otherwise) of uncertainty factors can only be considered in relation to a defined level of protection. A protection equivalent to an effect magnitude of 0.001-0.0001% over background incidence is generally considered acceptable. However, it is impossible to say whether this level of protection is in fact realised with the tolerable doses that are derived by employing uncertainty factors. Accordingly, it is difficult to assess whether uncertainty factors overestimate or underestimate the sensitivity differences in human populations. It is also often not appreciated that the outcome of probabilistic approaches to the multiplication of sub-factors is dependent on the choice of probability distributions. Therefore, the idea that default uncertainty factors are overly conservative worst-case scenarios which can account both for the lack of statistical power in animal experiments and protect against potential mixture effects is ill-founded. We contend that precautionary regulation should provide an incentive to generate better data and recommend adopting a pragmatic, but scientifically better founded approach to mixture risk assessment. © 2013 Martin et al.; licensee BioMed Central Ltd.Oak Foundatio

    Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions

    Get PDF
    The establishment of covalent junctions between carbon nanotubes (CNTs) and the modification of their straight tubular morphology are two strategies needed to successfully synthesize nanotube-based three-dimensional (3D) frameworks exhibiting superior material properties. Engineering such 3D structures in scalable synthetic processes still remains a challenge. This work pioneers the bulk synthesis of 3D macroscale nanotube elastic solids directly via a boron-doping strategy during chemical vapour deposition, which influences the formation of atomic-scale “elbow” junctions and nanotube covalent interconnections. Detailed elemental analysis revealed that the “elbow” junctions are preferred sites for excess boron atoms, indicating the role of boron and curvature in the junction formation mechanism, in agreement with our first principle theoretical calculations. Exploiting this material’s ultra-light weight, super-hydrophobicity, high porosity, thermal stability, and mechanical flexibility, the strongly oleophilic sponge-like solids are demonstrated as unique reusable sorbent scaffolds able to efficiently remove oil from contaminated seawater even after repeated use

    Quality assurance in psychiatry: quality indicators and guideline implementation

    Get PDF
    In many occasions, routine mental health care does not correspond to the standards that the medical profession itself puts forward. Hope exists to improve the outcome of severe mental illness by improving the quality of mental health care and by implementing evidence-based consensus guidelines. Adherence to guideline recommendations should reduce costly complications and unnecessary procedures. To measure the quality of mental health care and disease outcome reliably and validly, quality indicators have to be available. These indicators of process and outcome quality should be easily measurable with routine data, should have a strong evidence base, and should be able to describe quality aspects across all sectors over the whole disease course. Measurement-based quality improvement will not be successful when it results in overwhelming documentation reducing the time for clinicians for active treatment interventions. To overcome difficulties in the implementation guidelines and to reduce guideline non-adherence, guideline implementation and quality assurance should be embedded in a complex programme consisting of multifaceted interventions using specific psychological methods for implementation, consultation by experts, and reimbursement of documentation efforts. There are a number of challenges to select appropriate quality indicators in order to allow a fair comparison across different approaches of care. Carefully used, the use of quality indicators and improved guideline adherence can address suboptimal clinical outcomes, reduce practice variations, and narrow the gap between optimal and routine care

    Efferent Projections of Prokineticin 2 Expressing Neurons in the Mouse Suprachiasmatic Nucleus

    Get PDF
    The suprachiasmatic nucleus (SCN) in the hypothalamus is the predominant circadian clock in mammals. To function as a pacemaker, the intrinsic timing signal from the SCN must be transmitted to different brain regions. Prokineticin 2 (PK2) is one of the candidate output molecules from the SCN. In this study, we investigated the efferent projections of PK2-expressing neurons in the SCN through a transgenic reporter approach. Using a bacterial artificial chromosome (BAC) transgenic mouse line, in which the enhanced green fluorescence protein (EGFP) reporter gene expression was driven by the PK2 promoter, we were able to obtain an efferent projections map from the EGFP-expressing neurons in the SCN. Our data revealed that EGFP-expressing neurons in the SCN, hence representing some of the PK2-expressing neurons, projected to many known SCN target areas, including the ventral lateral septum, medial preoptic area, subparaventricular zone, paraventricular nucleus, dorsomedial hypothalamic nucleus, lateral hypothalamic area and paraventricular thalamic nucleus. The efferent projections of PK2-expressing neurons supported the role of PK2 as an output molecule of the SCN

    Saliva levels of Abeta1-42 as potential biomarker of Alzheimer's disease: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Simple, non-invasive tests for early detection of degenerative dementia by use of biomarkers are urgently required. However, up to the present, no validated extracerebral diagnostic markers for the early diagnosis of Alzheimer disease (AD) are available. The clinical diagnosis of probable AD is made with around 90% accuracy using modern clinical, neuropsychological and imaging methods. A biochemical marker that would support the clinical diagnosis and distinguish AD from other causes of dementia would therefore be of great value as a screening test. A total of 126 samples were obtained from subjects with AD, and age-sex-matched controls. Additionally, 51 Parkinson's disease (PD) patients were used as an example of another neurodegenerative disorder. We analyzed saliva and plasma levels of β amyloid (Aβ) using a highly sensitive ELISA kit.</p> <p>Results</p> <p>We found a small but statistically significant increase in saliva Aβ<sub>42 </sub>levels in mild AD patients. In addition, there were not differences in saliva concentration of Aβ<sub>42 </sub>between patients with PD and healthy controls. Saliva Aβ<sub>40 </sub>expression was unchanged within all the studied sample. The association between saliva Aβ<sub>42 </sub>levels and AD was independent of established risk factors, including age or Apo E, but was dependent on sex and functional capacity.</p> <p>Conclusions</p> <p>We suggest that saliva Aβ<sub>42 </sub>levels could be considered a potential peripheral marker of AD and help discrimination from other types of neurodegenerative disorders. We propose a new and promising biomarker for early AD.</p
    corecore