632 research outputs found

    Role of P-selectin in platelet sequestration in pulmonary capillaries during endotoxemia

    Get PDF
    Background: There is growing evidence that platelets accumulate in the lung and contribute to the pathogenesis of acute lung injury during endotoxemia. The aims of the present study were to localize platelet sequestration in the pulmonary microcirculation and to investigate the role of P-selectin as a molecular mechanism of platelet endothelial cell interaction. Methods: We used in vivo fluorescence microscopy to quantify the kinetics of fluorescently labeled erythrocytes and platelets in alveolar capillary networks in rabbit lungs. Results: Six hours after onset of endotoxin infusion we observed a massive rolling along and firm adherence of platelets to lung capillary endothelial cells whereas under control conditions no platelet sequestration was detected. P-selectin was expressed on the surface of separated platelets which were incubated with endotoxin and in lung tissue. Pretreatment of platelets with fucoidin, a P-selectin antagonist, significantly attenuated the endotoxin-induced platelet rolling and adherence. In contrast, intravenous infusion of fucoidin in endotoxin-treated rabbits did not inhibit platelet sequestration in pulmonary capillaries. Conclusion: We conclude that platelets accumulate in alveolar capillaries following endotoxemia. P-selectin expressed on the surface of platelets seems to play an important role in mediating this platelet-endothelial cell interaction. Copyright (c) 2006 S. Karger AG, Basel

    Primary cilia elongation in response to interleukin-1 mediates the inflammatory response

    Get PDF
    Primary cilia are singular, cytoskeletal organelles present in the majority of mammalian cell types where they function as coordinating centres for mechanotransduction, Wnt and hedgehog signalling. The length of the primary cilium is proposed to modulate cilia function, governed in part by the activity of intraflagellar transport (IFT). In articular cartilage, primary cilia length is increased and hedgehog signaling activated in osteoarthritis (OA). Here, we examine primary cilia length with exposure to the quintessential inflammatory cytokine interleukin-1 (IL-1), which is up-regulated in OA. We then test the hypothesis that the cilium is involved in mediating the downstream inflammatory response. Primary chondrocytes treated with IL-1 exhibited a 50 % increase in cilia length after 3 h exposure. IL-1-induced cilia elongation was also observed in human fibroblasts. In chondrocytes, this elongation occurred via a protein kinase A (PKA)-dependent mechanism. G-protein coupled adenylate cyclase also regulated the length of chondrocyte primary cilia but not downstream of IL-1. Chondrocytes treated with IL-1 exhibit a characteristic increase in the release of the inflammatory chemokines, nitric oxide and prostaglandin E2. However, in cells with a mutation in IFT88 whereby the cilia structure is lost, this response to IL-1 was significantly attenuated and, in the case of nitric oxide, completely abolished. Inhibition of IL-1-induced cilia elongation by PKA inhibition also attenuated the chemokine response. These results suggest that cilia assembly regulates the response to inflammatory cytokines. Therefore, the cilia proteome may provide a novel therapeutic target for the treatment of inflammatory pathologies, including OA

    Subcellular localization of MC4R with ADCY3 at neuronal primary cilia underlies a common pathway for genetic predisposition to obesity.

    Get PDF
    Most monogenic cases of obesity in humans have been linked to mutations in genes encoding members of the leptin-melanocortin pathway. Specifically, mutations in MC4R, the melanocortin-4 receptor gene, account for 3-5% of all severe obesity cases in humans1-3. Recently, ADCY3 (adenylyl cyclase 3) gene mutations have been implicated in obesity4,5. ADCY3 localizes to the primary cilia of neurons 6 , organelles that function as hubs for select signaling pathways. Mutations that disrupt the functions of primary cilia cause ciliopathies, rare recessive pleiotropic diseases in which obesity is a cardinal manifestation 7 . We demonstrate that MC4R colocalizes with ADCY3 at the primary cilia of a subset of hypothalamic neurons, that obesity-associated MC4R mutations impair ciliary localization and that inhibition of adenylyl cyclase signaling at the primary cilia of these neurons increases body weight. These data suggest that impaired signaling from the primary cilia of MC4R neurons is a common pathway underlying genetic causes of obesity in humans

    Mesoscale modeling and simulation of microstructure evolution during dynamic recrystallization of a Ni-based superalloy

    Get PDF
    Microstructural evolution and plastic flow characteristics of a Ni-based superalloy were investigated using a simulative model that couples the basic metallurgical principle of dynamic recrystallization (DRX) with the twodimensional (2D) cellular automaton (CA). Variation of dislocation density with local strain of deformation is considered for accurate determination of the microstructural evolution during DRX. The grain topography, the grain size and the recrystallized fraction can be well predicted by using the developed CA model, which enables to the establishment of the relationship between the flow stress, dislocation density, recrystallized fraction volume, recrystallized grain size and the thermomechanical parameters

    Prostaglandin signalling regulates ciliogenesis by modulating intraflagellar transport

    Get PDF
    Cilia are microtubule-based organelles that mediate signal transduction in a variety of tissues. Despite their importance, the signalling cascades that regulate cilium formation remain incompletely understood. Here we report that prostaglandin signalling affects ciliogenesis by regulating anterograde intraflagellar transport (IFT). Zebrafish leakytail (lkt) mutants show ciliogenesis defects, and the lkt locus encodes an ATP-binding cassette transporter (ABCC4). We show that Lkt/ABCC4 localizes to the cell membrane and exports prostaglandin E2 (PGE2), a function that is abrogated by the Lkt/ABCC4T804M mutant. PGE2 synthesis enzyme cyclooxygenase-1 and its receptor, EP4, which localizes to the cilium and activates the cyclic-AMP-mediated signalling cascade, are required for cilium formation and elongation. Importantly, PGE2 signalling increases anterograde but not retrograde velocity of IFT and promotes ciliogenesis in mammalian cells. These findings lead us to propose that Lkt/ABCC4-mediated PGE2 signalling acts through a ciliary G-protein-coupled receptor, EP4, to upregulate cAMP synthesis and increase anterograde IFT, thereby promoting ciliogenesis

    Differential Effects of Attention-, Compassion-, and Socio-Cognitively Based Mental Practices on Self-Reports of Mindfulness and Compassion

    Get PDF
    Research on the effects of mindfulness- and compassion-based interventions is flourishing along with self-report scales to assess facets of these broad concepts. However, debates remain as to which mental practices are most appropriate to develop the attentional, cognitive, and socio-affective facets of mindfulness and compassion. One crucial question is whether present-moment, attention-focused mindfulness practices are sufficient to induce a cascade of changes across the different proposed facets of mindfulness, including nonjudgmental acceptance, as well as compassion or whether explicit socio-affective training is required. Here, we address these questions in the context of a 9-month longitudinal study (the ReSource Project) by examining the differential effects of three different 3-month mental training modules on subscales of mindfulness and compassion questionnaires. The “Presence” module, which aimed at cultivating present-moment-focused attention and body awareness, led to increases in the observing, nonreacting, and presence subscales, but not to increases in acceptance or nonjudging. These latter facets benefitted from specific cultivation through the socio-cognitive “Perspective” module and socio-affective, compassion-based “Affect” module, respectively. These modules also led to further increases in scores on the subscales affected by the Presence module. Moreover, scores on the compassion scales were uniquely influenced by the Affect module. Thus, whereas a present-moment attention-focused training, as implemented in many mindfulness-based programs, was indeed able to increase attentional facets of mindfulness, only socio-cognitive and compassion-based practices led to broad changes in ethical-motivational qualities like a nonjudgmental attitude, compassion, and self-compassion

    Positive and Negative Regulation of Gli Activity by Kif7 in the Zebrafish Embryo

    Get PDF
    Loss of function mutations of Kif7, the vertebrate orthologue of the Drosophila Hh pathway component Costal2, cause defects in the limbs and neural tubes of mice, attributable to ectopic expression of Hh target genes. While this implies a functional conservation of Cos2 and Kif7 between flies and vertebrates, the association of Kif7 with the primary cilium, an organelle absent from most Drosophila cells, suggests their mechanisms of action may have diverged. Here, using mutant alleles induced by Zinc Finger Nuclease-mediated targeted mutagenesis, we show that in zebrafish, Kif7 acts principally to suppress the activity of the Gli1 transcription factor. Notably, we find that endogenous Kif7 protein accumulates not only in the primary cilium, as previously observed in mammalian cells, but also in cytoplasmic puncta that disperse in response to Hh pathway activation. Moreover, we show that Drosophila Costal2 can substitute for Kif7, suggesting a conserved mode of action of the two proteins. We show that Kif7 interacts with both Gli1 and Gli2a and suggest that it functions to sequester Gli proteins in the cytoplasm, in a manner analogous to the regulation of Ci by Cos2 in Drosophila. We also show that zebrafish Kif7 potentiates Gli2a activity by promoting its dissociation from the Suppressor of Fused (Sufu) protein and present evidence that it mediates a Smo dependent modification of the full length form of Gli2a. Surprisingly, the function of Kif7 in the zebrafish embryo appears restricted principally to mesodermal derivatives, its inactivation having little effect on neural tube patterning, even when Sufu protein levels are depleted. Remarkably, zebrafish lacking all Kif7 function are viable, in contrast to the peri-natal lethality of mouse kif7 mutants but similar to some Acrocallosal or Joubert syndrome patients who are homozygous for loss of function KIF7 alleles

    The anti-bacterial iron-restriction defence mechanisms of egg white; the potential role of three lipocalin-like proteins in resistance against Salmonella

    Get PDF
    Salmonella enterica serovar Enteritidis (SE) is the most frequently-detected Salmonella in foodborne outbreaks in the European Union. Among such outbreaks, egg and egg products were identified as the most common vehicles of infection. Possibly, the major antibacterial property of egg white is iron restriction, which results from the presence of the iron-binding protein, ovotransferrin. To circumvent iron restriction, SE synthesise catecholate siderophores (i.e. enterobactin and salmochelin) that can chelate iron from host iron-binding proteins. Here, we highlight the role of lipocalin-like proteins found in egg white that could enhance egg-white iron restriction through sequestration of certain siderophores, including enterobactin. Indeed, it is now apparent that the egg-white lipocalin, Ex-FABP, can inhibit bacterial growth via its siderophore-binding capacity in vitro. However, it remains unclear whether ex-FABP performs such a function in egg white or during bird infection. Regarding the two other lipocalins of egg white (Cal-γ and α-1-glycoprotein), there is currently no evidence to indicate that they sequester siderophores

    Lipocalin 2 modulates the cellular response to amyloid beta

    Get PDF
    The production, accumulation and aggregation of amyloid beta (Aß) peptides in Alzheimer's disease (AD) are influenced by different modulators. Among these are iron and iron-related proteins, given their ability to modulate the expression of the amyloid precursor protein and to drive Aß aggregation. Herein, we describe that lipocalin 2 (LCN2), a mammalian acute-phase protein involved in iron homeostasis, is highly produced in response to Aß1-42 by choroid plexus epithelial cells and astrocytes, but not by microglia or neurons. Although Aß1-42 stimulation decreases the dehydrogenase activity and survival of wild-type astrocytes, astrocytes lacking the expression of Lcn2 are not affected. This protection results from a lower expression of the proapoptotic gene Bim and a decreased inflammatory response. Altogether, these findings show that Aß toxicity to astrocytes requires LCN2, which represents a novel mechanism to target when addressing AD.Cell Death and Differentiation advance online publication, 23 May 2014; doi:10.1038/cdd.2014.68.We thank Dr. Ioannis Sotiropoulos for reagents and comments. Sandro Da Mesquita and Ana Catarina Ferreira are recipients of PhD fellowships and Fernanda Marques is recipient of a postdoctoral fellowship by the Fundacao para a Ciencia e Tecnologia (FCT, Portugal)/FEDER. This work was supported by a grant from FCT/FEDER (EXPL/NEUOSD/2196/2013)
    corecore