14 research outputs found
Negative feedback regulation of the ERK1/2 MAPK pathway
The extracellular signal-regulated kinase 1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) signalling pathway regulates many cellular functions, including proliferation, differentiation, and transformation. To reliably convert external stimuli into specific cellular responses and to adapt to environmental circumstances, the pathway must be integrated into the overall signalling activity of the cell. Multiple mechanisms have evolved to perform this role. In this review, we will focus on negative feedback mechanisms and examine how they shape ERK1/2 MAPK signalling. We will first discuss the extensive number of negative feedback loops targeting the different components of the ERK1/2 MAPK cascade, specifically the direct posttranslational modification of pathway components by downstream protein kinases and the induction of de novo gene synthesis of specific pathway inhibitors. We will then evaluate how negative feedback modulates the spatiotemporal signalling dynamics of the ERK1/2 pathway regarding signalling amplitude and duration as well as subcellular localisation. Aberrant ERK1/2 activation results in deregulated proliferation and malignant transformation in model systems and is commonly observed in human tumours. Inhibition of the ERK1/2 pathway thus represents an attractive target for the treatment of malignant tumours with increased ERK1/2 activity. We will, therefore, discuss the effect of ERK1/2 MAPK feedback regulation on cancer treatment and how it contributes to reduced clinical efficacy of therapeutic agents and the development of drug resistance
A Cell-Free Translocation System Using Extracts of Cultured Insect Cells to Yield Functional Membrane Proteins
High frequency of vitamin D receptor gene polymorphism FokI in Brazilian Type 1 diabetes mellitus patients with clinical autoimmune thyroid disease
BACKGROUND: Polymorphisms of vitamin D receptor (VDR) gene have been studied as genetic markers of type 1 diabetes mellitus (T1DM) and some studies have reported associations with autoimmune thyroid disease. The aim of this study was to evaluate the relationship between VDR FokI polymorphism (rs10735810), thyroid autoimmunity and thyroid dysfunction (TD) in Brazilian T1DM. METHODS: One-hundred-eighty T1DM patients were evaluated for age, duration of diabetes (DDM), positivity to TPO Antibody (TPOA), GAD Antibody (GADA), IA2 Antibody (IA2A) and fasting serum C-peptide (FCP) according to diagnosis of TD. PCR–RFLP analyses were carried out for VDR polymorphism FokI. RESULTS: TPOA positivity (80.0 vs. 25.0 %, p < 0.001) and GADA positivity (56.0 vs. 30.3 %, p = 0.01) were higher in T1DM patients with TD with the same age and DDM than the group without TD, with no difference of FCP and IA2A positivity. We observed higher prevalence of VDR FokI in T1DM with TD (ff and Ff 73.9 % with TD vs. 52.7 % without TD, p = 0.05). Positivity to TPOA and presence of FokI polymorphism were significantly associated with the concurrence of TD in T1DM patients (OR 18.1; CI 3.7–87.0; p < 0.001). CONCLUSIONS: The VDR FokI polymorphism (rs10735810) was associated to persistence of GADA, TPOA positivity and TD in Brazilian T1DM. Positivity to TPOA and VDR polymorphism FokI were strongly associated with concurrence of T1D and TD. These data collaborate to understanding the joint susceptibility genes for TD in T1DM
Liver transplantation for chronic hepatitis C virus infection in the United States 2002–2014: An analysis of the UNOS/OPTN registry
Anomalous enhancement of the sheet carrier density beyond the classic limit on a SrTiO3 surface
Vermiculite modified with alkylammonium salts: characterization and sorption of ibuprofen and paracetamol
Chemical Durability of Glasses
International audienceThe chemical durability of silicate glasses has long been studied for many applications, in particular when glasses are subjected to environmental weathering and aqueous corrosion. Typical applications include optical instruments, glass vessels, radioactive waste confinement, and bone reparation. Glass corrosion involves ion exchange, water diffusion, network dissolution-recondensation, and secondary phase precipitation. These reactions may impact, among other things, the release of contaminants from waste glasses, and the glass mechanical, optical and catalytic properties. The glass corrosion mechanisms and alteration product formation have been well studied as a function of many environmental parameters (temperature, pH, water composition, etc.).The present chapter describes the general phenomena behind glass corrosion and details glass dissolution in aqueous conditions on one hand and glass vapor hydration on the other hand. The latter phenomenon has not received the same level of attention in the literature relative to the corrosion in aqueous solutions. Research and development needs, in particular in complex systems such as radioactive waste geological repositories, are discussed in the conclusion of the chapter
