6,835 research outputs found
On the Deformation of a Hyperelastic Tube Due to Steady Viscous Flow Within
In this chapter, we analyze the steady-state microscale fluid--structure
interaction (FSI) between a generalized Newtonian fluid and a hyperelastic
tube. Physiological flows, especially in hemodynamics, serve as primary
examples of such FSI phenomena. The small scale of the physical system renders
the flow field, under the power-law rheological model, amenable to a
closed-form solution using the lubrication approximation. On the other hand,
negligible shear stresses on the walls of a long vessel allow the structure to
be treated as a pressure vessel. The constitutive equation for the microtube is
prescribed via the strain energy functional for an incompressible, isotropic
Mooney--Rivlin material. We employ both the thin- and thick-walled formulations
of the pressure vessel theory, and derive the static relation between the
pressure load and the deformation of the structure. We harness the latter to
determine the flow rate--pressure drop relationship for non-Newtonian flow in
thin- and thick-walled soft hyperelastic microtubes. Through illustrative
examples, we discuss how a hyperelastic tube supports the same pressure load as
a linearly elastic tube with smaller deformation, thus requiring a higher
pressure drop across itself to maintain a fixed flow rate.Comment: 19 pages, 3 figures, Springer book class; v2: minor revisions, final
form of invited contribution to the Springer volume entitled "Dynamical
Processes in Generalized Continua and Structures" (in honour of Academician
D.I. Indeitsev), eds. H. Altenbach, A. Belyaev, V. A. Eremeyev, A. Krivtsov
and A. V. Porubo
N-wasp Is Required For Structural Integrity Of The Blood-testis Barrier.
published_or_final_versio
Hyaluronic Acid Instillation Following Arthroscopic Anterior Cruciate Ligament Reconstruction: A Double-blinded, Randomised Controlled Study.
PURPOSE: To assess the effect of hyaluronic acid instillation after arthroscopic anterior cruciate ligament (ACL) reconstruction for improving pain, range of movement, and function of the knee. METHODS: 28 men and 4 women underwent arthroscopic ACL reconstruction for isolated ACL rupture (partial or complete) and instability after recreational sports injury 2 to 120 months earlier. They were randomised to undergo arthroscopic ACL reconstruction followed by intra-articular viscoseal instillation (13 men and 3 women) or arthroscopic ACL reconstruction alone (15 men and 1 woman). The knee injury osteoarthritis outcome score (for pain, symptoms, activities of daily living, sport and recreation function, and quality of life), range of movement, knee circumference, and analgesic use were assessed on days -1, 1, and 2, and weeks 2, 6 and 12. RESULTS: Patient demographics were similar at baseline. At postoperative days 1 and 2, all subscales of the knee injury osteoarthritis outcome score (except for quality of life) were significantly higher in the viscoseal group. At weeks 2, 6, and 12, improvement in both groups equalised. Knee swelling (change in knee circumference) was significantly less in the viscoseal group at days 1 and 2 (p=0.009 and p=0.038, respectively, Mann-Whitney U test). Only one patient in the viscoseal group had a limited range of movement. No patient developed any adverse reaction. CONCLUSION: Intra-articular viscoseal instillation improved pain control and swelling 2 days after arthroscopic ACL reconstruction.published_or_final_versio
A γ-secretase inhibitor, but not a γ-secretase modulator, induced defects in BDNF axonal trafficking and signaling: evidence for a role for APP.
Clues to Alzheimer disease (AD) pathogenesis come from a variety of different sources including studies of clinical and neuropathological features, biomarkers, genomics and animal and cellular models. An important role for amyloid precursor protein (APP) and its processing has emerged and considerable interest has been directed at the hypothesis that Aβ peptides induce changes central to pathogenesis. Accordingly, molecules that reduce the levels of Aβ peptides have been discovered such as γ-secretase inhibitors (GSIs) and modulators (GSMs). GSIs and GSMs reduce Aβ levels through very different mechanisms. However, GSIs, but not GSMs, markedly increase the levels of APP CTFs that are increasingly viewed as disrupting neuronal function. Here, we evaluated the effects of GSIs and GSMs on a number of neuronal phenotypes possibly relevant to their use in treatment of AD. We report that GSI disrupted retrograde axonal trafficking of brain-derived neurotrophic factor (BDNF), suppressed BDNF-induced downstream signaling pathways and induced changes in the distribution within neuronal processes of mitochondria and synaptic vesicles. In contrast, treatment with a novel class of GSMs had no significant effect on these measures. Since knockdown of APP by specific siRNA prevented GSI-induced changes in BDNF axonal trafficking and signaling, we concluded that GSI effects on APP processing were responsible, at least in part, for BDNF trafficking and signaling deficits. Our findings argue that with respect to anti-amyloid treatments, even an APP-specific GSI may have deleterious effects and GSMs may serve as a better alternative
Depression und Suizidalität
Even if the freedom to suicide is part of our human existence, about 90% of all suicides occur in the context of psychiatric disorders and thus in states of limited power of judgment. Depressive disorders represent the most frequent cause for suicides. Thus, optimization of medical care for depressive patients is one of the most promising strategies to prevent suicides. In the context of the `Nuremberg Alliance Against Depression' it came to an obvious reduction of suicidal acts compared to a baseline year and compared to the control region of Wurzburg. The reduction could be reached by a cooperation with GPs, multipliers such as teachers, priests, geriatric caregivers and the media, through intensive public relations work and through support of self help activities. This approach is carried forward within the Germany-wide `Alliance Against Depression' and within the `European Alliance Against Depression' ( EAAD) which is funded by the European Commission. In the last part of the article the suicide- preventive, but also the possible suicide-inducing effect of antidepressants is discussed
Goldstini
Supersymmetric phenomenology has been largely bound to the hypothesis that
supersymmetry breaking originates from a single source. In this paper, we relax
this underlying assumption and consider a multiplicity of sectors which
independently break supersymmetry, thus yielding a corresponding multiplicity
of goldstini. While one linear combination of goldstini is eaten via the
super-Higgs mechanism, the orthogonal combinations remain in the spectrum as
physical degrees of freedom. Interestingly, supergravity effects induce a
universal tree-level mass for the goldstini which is exactly twice the
gravitino mass. Since visible sector fields can couple dominantly to the
goldstini rather than the gravitino, this framework allows for substantial
departures from conventional supersymmetric phenomenology. In fact, this even
occurs when a conventional mediation scheme is augmented by additional
supersymmetry breaking sectors which are fully sequestered. We discuss a number
of striking collider signatures, including various novel decay modes for the
lightest observable-sector supersymmetric particle, gravitinoless
gauge-mediated spectra, and events with multiple displaced vertices. We also
describe goldstini cosmology and the possibility of goldstini dark matter.Comment: 14 pages, 7 figures; references adde
Non-Perturbative Topological Strings And Conformal Blocks
We give a non-perturbative completion of a class of closed topological string
theories in terms of building blocks of dual open strings. In the specific case
where the open string is given by a matrix model these blocks correspond to a
choice of integration contour. We then apply this definition to the AGT setup
where the dual matrix model has logarithmic potential and is conjecturally
equivalent to Liouville conformal field theory. By studying the natural
contours of these matrix integrals and their monodromy properties, we propose a
precise map between topological string blocks and Liouville conformal blocks.
Remarkably, this description makes use of the light-cone diagrams of closed
string field theory, where the critical points of the matrix potential
correspond to string interaction points.Comment: 36 page
The extraordinary evolutionary history of the reticuloendotheliosis viruses
The reticuloendotheliosis viruses (REVs) comprise several closely related amphotropic retroviruses isolated from birds. These viruses exhibit several highly unusual characteristics that have not so far been adequately explained, including their extremely close relationship to mammalian retroviruses, and their presence as endogenous sequences within the genomes of certain large DNA viruses. We present evidence for an iatrogenic origin of REVs that accounts for these phenomena. Firstly, we identify endogenous retroviral fossils in mammalian genomes that share a unique recombinant structure with REVs—unequivocally demonstrating that REVs derive directly from mammalian retroviruses. Secondly, through sequencing of archived REV isolates, we confirm that contaminated Plasmodium lophurae stocks have been the source of multiple REV outbreaks in experimentally infected birds. Finally, we show that both phylogenetic and historical evidence support a scenario wherein REVs originated as mammalian retroviruses that were accidentally introduced into avian hosts in the late 1930s, during experimental studies of P. lophurae, and subsequently integrated into the fowlpox virus (FWPV) and gallid herpesvirus type 2 (GHV-2) genomes, generating recombinant DNA viruses that now circulate in wild birds and poultry. Our findings provide a novel perspective on the origin and evolution of REV, and indicate that horizontal gene transfer between virus families can expand the impact of iatrogenic transmission events
Upregulation of the cell-cycle regulator RGC-32 in Epstein-Barr virus-immortalized cells
Epstein-Barr virus (EBV) is implicated in the pathogenesis of multiple human tumours of lymphoid and epithelial origin. The virus infects and immortalizes B cells establishing a persistent latent infection characterized by varying patterns of EBV latent gene expression (latency 0, I, II and III). The CDK1 activator, Response Gene to Complement-32 (RGC-32, C13ORF15), is overexpressed in colon, breast and ovarian cancer tissues and we have detected selective high-level RGC-32 protein expression in EBV-immortalized latency III cells. Significantly, we show that overexpression of RGC-32 in B cells is sufficient to disrupt G2 cell-cycle arrest consistent with activation of CDK1, implicating RGC-32 in the EBV transformation process. Surprisingly, RGC-32 mRNA is expressed at high levels in latency I Burkitt's lymphoma (BL) cells and in some EBV-negative BL cell-lines, although RGC-32 protein expression is not detectable. We show that RGC-32 mRNA expression is elevated in latency I cells due to transcriptional activation by high levels of the differentially expressed RUNX1c transcription factor. We found that proteosomal degradation or blocked cytoplasmic export of the RGC-32 message were not responsible for the lack of RGC-32 protein expression in latency I cells. Significantly, analysis of the ribosomal association of the RGC-32 mRNA in latency I and latency III cells revealed that RGC-32 transcripts were associated with multiple ribosomes in both cell-types implicating post-initiation translational repression mechanisms in the block to RGC-32 protein production in latency I cells. In summary, our results are the first to demonstrate RGC-32 protein upregulation in cells transformed by a human tumour virus and to identify post-initiation translational mechanisms as an expression control point for this key cell-cycle regulator
Mapping interactions with the chaperone network reveals factors that protect against tau aggregation.
A network of molecular chaperones is known to bind proteins ('clients') and balance their folding, function and turnover. However, it is often unclear which chaperones are critical for selective recognition of individual clients. It is also not clear why these key chaperones might fail in protein-aggregation diseases. Here, we utilized human microtubule-associated protein tau (MAPT or tau) as a model client to survey interactions between ~30 purified chaperones and ~20 disease-associated tau variants (~600 combinations). From this large-scale analysis, we identified human DnaJA2 as an unexpected, but potent, inhibitor of tau aggregation. DnaJA2 levels were correlated with tau pathology in human brains, supporting the idea that it is an important regulator of tau homeostasis. Of note, we found that some disease-associated tau variants were relatively immune to interactions with chaperones, suggesting a model in which avoiding physical recognition by chaperone networks may contribute to disease
- …
