1,129 research outputs found

    Realization of low-loss mirrors with sub-nanometer flatness for future gravitational wave detectors

    Get PDF
    The second generation of gravitational wave detectors will aim at improving by an order of magnitude their sensitivity versus the present ones (LIGO and VIRGO). These detectors are based on long-baseline Michelson interferometer with high finesse Fabry-Perot cavity in the arms and have strong requirements on the mirrors quality. These large low-loss mirrors (340 mm in diameter, 200 mm thick) must have a near perfect flatness. The coating process shall not add surface figure Zernike terms higher than second order with amplitude >0.5 nm over the central 160 mm diameter. The limits for absorption and scattering losses are respectively 0.5 and 5 ppm. For each cavity the maximum loss budget due to the surface figure error should be smaller than 50 ppm. Moreover the transmission matching between the two inputs mirrors must be better than 99%. We describe the different configurations that were explored in order to respect all these requirements. Coatings are done using IBS. The two first configurations based on a single rotation motion combined or not with uniformity masks allow to obtain coating thickness uniformity around 0.2 % rms on 160 mm diameter. But this is not sufficient to meet all the specifications. A planetary motion completed by masking technique has been studied. With simulated values the loss cavity is below 20 ppm, better than the requirements. First experimental results obtained with the planetary system will be presented

    Interrupt Timed Automata: verification and expressiveness

    Get PDF
    We introduce the class of Interrupt Timed Automata (ITA), a subclass of hybrid automata well suited to the description of timed multi-task systems with interruptions in a single processor environment. While the reachability problem is undecidable for hybrid automata we show that it is decidable for ITA. More precisely we prove that the untimed language of an ITA is regular, by building a finite automaton as a generalized class graph. We then establish that the reachability problem for ITA is in NEXPTIME and in PTIME when the number of clocks is fixed. To prove the first result, we define a subclass ITA- of ITA, and show that (1) any ITA can be reduced to a language-equivalent automaton in ITA- and (2) the reachability problem in this subclass is in NEXPTIME (without any class graph). In the next step, we investigate the verification of real time properties over ITA. We prove that model checking SCL, a fragment of a timed linear time logic, is undecidable. On the other hand, we give model checking procedures for two fragments of timed branching time logic. We also compare the expressive power of classical timed automata and ITA and prove that the corresponding families of accepted languages are incomparable. The result also holds for languages accepted by controlled real-time automata (CRTA), that extend timed automata. We finally combine ITA with CRTA, in a model which encompasses both classes and show that the reachability problem is still decidable. Additionally we show that the languages of ITA are neither closed under complementation nor under intersection

    INTERNAL FRICTION AND YOUNG'S MODULUS MEASUREMENTS ON SiO2 AND Ta2O5 FILMS DONE WITH AN ULTRA-HIGH Q SILICON-WAFER SUSPENSION

    No full text
    International audienceIn order to study the internal friction of thin films a nodal suspension system called GeNS (Gentle Nodal Suspension) has been developed. The key features of this system are: i) the possibility to use substrates easily available like silicon wafers; ii) extremely low excess losses coming from the suspension system which allows to measure Q factors in excess of 2×10^8 on 3 " diameter wafers; iii) reproducibility of measurements within few percent on mechanical losses and 0.01% on resonant frequencies; iv) absence of clamping; v) the capability to operate at cryogenic temperatures. Measurements at cryogenic temperatures on SiO 2 and at room temperature only on Ta2O5 films deposited on silicon are presented

    Laser frequency stabilization using folded cavity and mirror reflectivity tuning

    No full text
    International audienceA new method of laser frequency stabilization using polarization property of an optical cavity is proposed. In a standard Fabry–Perot cavity, the coating layers thickness of cavity mirrors is calculated to obtain the same phase shift for sand p-wave but a slight detuning from the nominal thickness can produce sand p-wave phase detuning. As a result, each wave accumulates a different round-trip phase shift and resonates at a different frequency. Using this polarization property, an error signal is generated by a simple setup consisting of a quarter wave-plate rotated at 45°, a polarizing beam splitter and two photodiodes. This method exhibits similar error signal as the Pound–Drever–Hall technique but without need for any frequency modulation. Lock theory and experimental results are presented in this paper.

    Sensitivity Studies for Third-Generation Gravitational Wave Observatories

    Full text link
    Advanced gravitational wave detectors, currently under construction, are expected to directly observe gravitational wave signals of astrophysical origin. The Einstein Telescope, a third-generation gravitational wave detector, has been proposed in order to fully open up the emerging field of gravitational wave astronomy. In this article we describe sensitivity models for the Einstein Telescope and investigate potential limits imposed by fundamental noise sources. A special focus is set on evaluating the frequency band below 10Hz where a complex mixture of seismic, gravity gradient, suspension thermal and radiation pressure noise dominates. We develop the most accurate sensitivity model, referred to as ET-D, for a third-generation detector so far, including the most relevant fundamental noise contributions.Comment: 13 pages, 7 picture

    Characterization of the LIGO detectors during their sixth science run

    Get PDF
    31 pages, 13 figures - See paper for full list of authorsInternational audienceIn 2009-2010, the Laser Interferometer Gravitational-wave Observatory (LIGO) operated together with international partners Virgo and GEO600 as a network to search for gravitational waves of astrophysical origin. The sensitiv- ity of these detectors was limited by a combination of noise sources inherent to the instrumental design and its environment, often localized in time or frequency, that couple into the gravitational-wave readout. Here we review the performance of the LIGO instruments during this epoch, the work done to characterize the de- tectors and their data, and the effect that transient and continuous noise artefacts have on the sensitivity of LIGO to a variety of astrophysical sources

    Scientific Objectives of Einstein Telescope

    Full text link
    The advanced interferometer network will herald a new era in observational astronomy. There is a very strong science case to go beyond the advanced detector network and build detectors that operate in a frequency range from 1 Hz-10 kHz, with sensitivity a factor ten better in amplitude. Such detectors will be able to probe a range of topics in nuclear physics, astronomy, cosmology and fundamental physics, providing insights into many unsolved problems in these areas.Comment: 18 pages, 4 figures, Plenary talk given at Amaldi Meeting, July 201

    Scientific Potential of Einstein Telescope

    Full text link
    Einstein gravitational-wave Telescope (ET) is a design study funded by the European Commission to explore the technological challenges of and scientific benefits from building a third generation gravitational wave detector. The three-year study, which concluded earlier this year, has formulated the conceptual design of an observatory that can support the implementation of new technology for the next two to three decades. The goal of this talk is to introduce the audience to the overall aims and objectives of the project and to enumerate ET's potential to influence our understanding of fundamental physics, astrophysics and cosmology.Comment: Conforms to conference proceedings, several author names correcte

    Searching for stochastic gravitational waves using data from the two co-located LIGO Hanford detectors

    Get PDF
    21 pages, 10 figures, 5 tables, see paper for full list of authorsInternational audienceSearches for a stochastic gravitational-wave background (SGWB) using terrestrial detectors typically involve cross-correlating data from pairs of detectors. The sensitivity of such cross-correlation analyses depends, among other things, on the separation between the two detectors: the smaller the separation, the better the sensitivity. Hence, a co-located detector pair is more sensitive to a gravitational-wave background than a non-co-located detector pair. However, co-located detectors are also expected to suffer from correlated noise from instrumental and environmental effects that could contaminate the measurement of the background. Hence, methods to identify and mitigate the effects of correlated noise are necessary to achieve the potential increase in sensitivity of co-located detectors. Here we report on the first SGWB analysis using the two LIGO Hanford detectors and address the complications arising from correlated environmental noise. We apply correlated noise identification and mitigation techniques to data taken by the two LIGO Hanford detectors, H1 and H2, during LIGO's fifth science run. At low frequencies, 40 - 460 Hz, we are unable to sufficiently mitigate the correlated noise to a level where we may confidently measure or bound the stochastic gravitational-wave signal. However, at high frequencies, 460-1000 Hz, these techniques are sufficient to set a 95% confidence level (C.L.) upper limit on the gravitational-wave energy density of \Omega(f)<7.7 x 10^{-4} (f/ 900 Hz)^3, which improves on the previous upper limit by a factor of ∌180. In doing so, we demonstrate techniques that will be useful for future searches using advanced detectors, where correlated noise (e.g., from global magnetic fields) may affect even widely separated detectors
    • 

    corecore