46,148 research outputs found
Impact of stellar companions on precise radial velocities
Context: With the announced arrival of instruments such as ESPRESSO one can
expect that several systematic noise sources on the measurement of precise
radial velocity will become the limiting factor instead of photon noise. A
stellar companion within the fiber is such a possible noise source. Aims: With
this work we aim at characterizing the impact of a stellar companion within the
fiber to radial velocity measurements made by fiber-fed spectrographs. We
consider the contaminant star either to be part of a binary system whose
primary star is the target star, or as a background/foreground star. Methods:
To carry out our study, we used HARPS spectra, co-added the target with
contaminant spectra, and then compared the resulting radial velocity with that
obtained from the original target spectrum. We repeated this procedure and used
different tunable knobs to reproduce the previously mentioned scenarios.
Results: We find that the impact on the radial velocity calculation is a
function of the difference between individual radial velocities, of the
difference between target and contaminant magnitude, and also of their spectral
types. For the worst-case scenario in which both target and contaminant star
are well centered on the fiber, the maximum contamination for a G or K star may
be higher than 10 cm/s, on average, if the difference between target and
contaminant magnitude is < 10, and higher than 1 m/s if <
8. If the target star is of spectral type M, < 8 produces the same
contamination of 10 cm/s, and a contamination may be higher than 1 m/sComment: Accepted for publication in A&A on 29/12/2019 - 14 page
Probing the Cosmological Principle in the counts of radio galaxies at different frequencies
According to the Cosmological Principle, the matter distribution on very
large scales should have a kinematic dipole that is aligned with that of the
CMB. We determine the dipole anisotropy in the number counts of two all-sky
surveys of radio galaxies. For the first time, this analysis is presented for
the TGSS survey, allowing us to check consistency of the radio dipole at low
and high frequencies by comparing the results with the well-known NVSS survey.
We match the flux thresholds of the catalogues, with flux limits chosen to
minimise systematics, and adopt a strict masking scheme. We find dipole
directions that are in good agreement with each other and with the CMB dipole.
In order to compare the amplitude of the dipoles with theoretical predictions,
we produce sets of lognormal realisations. Our realisations include the
theoretical kinematic dipole, galaxy clustering, Poisson noise, simulated
redshift distributions which fit the NVSS and TGSS source counts, and errors in
flux calibration. The measured dipole for NVSS is times larger than
predicted by the mock data. For TGSS, the dipole is almost times
larger than predicted, even after checking for completeness and taking account
of errors in source fluxes and in flux calibration. Further work is required to
understand the nature of the systematics that are the likely cause of the
anomalously large TGSS dipole amplitude.Comment: 13 pages, 8 figures, 2 tables; Significant improvements. Version
accepted by JCA
Probing the effect of gravitational microlensing on the measurements of the Rossiter-McLaughlin effect
In general, in the studies of transit light-curves and the
Rossiter-McLaughlin (RM), the contribution of the planet's gravitational
microlensing is neglected. Theoretical studies, have, however shown that the
planet's microlensing can affect the transit light-curve and in some extreme
cases cause the transit depth to vanish. In this letter, we present the results
of our quantitative analysis of microlening on the RM effect. Results indicate
that for massive planets in on long period orbits, the planet's microlensing
will have considerable contribution to the star's RV measurements. We present
the details of our study, and discuss our analysis and results.Comment: 6 pages, 3 figures, accepted for publication in Astronomy &
Astrophysic
Bifurcations in the theory of current transfer to cathodes of dc discharges and observations of transitions between different modes
General scenarios of transitions between different spot patterns on
electrodes of dc gas discharges and their relation to bifurcations of
steady-state solutions are analyzed. In the case of cathodes of arc discharges,
it is shown that any transition between different modes of current transfer is
related to a bifurcation of steady-state solutions. In particular, transitions
between diffuse and spot modes on axially symmetric cathodes, frequently
observed in the experiment, represent an indication of the presence of
pitchfork or fold bifurcations of steady-state solutions. Experimental
observations of transitions on cathodes of dc glow microdischarges are analyzed
and those potentially related to bifurcations of steady-state solutions are
identified. The relevant bifurcations are investigated numerically and the
computed patterns are found to conform to those observed in the course of the
corresponding transitions in the experiment
Twenty-one centimeter tomography with foregrounds
Twenty-one centimeter tomography is emerging as a powerful tool to explore
the end of the cosmic dark ages and the reionization epoch, but it will only be
as good as our ability to accurately model and remove astrophysical foreground
contamination. Previous treatments of this problem have focused on the angular
structure of the signal and foregrounds and what can be achieved with limited
spectral resolution (bandwidths in the 1 MHz range). In this paper we introduce
and evaluate a ``blind'' method to extract the multifrequency 21cm signal by
taking advantage of the smooth frequency structure of the Galactic and
extragalactic foregrounds. We find that 21 cm tomography is typically limited
by foregrounds on scales Mpc and limited by noise on scales Mpc, provided that the experimental bandwidth can be made substantially
smaller than 0.1 MHz. Our results show that this approach is quite promising
even for scenarios with rather extreme contamination from point sources and
diffuse Galactic emission, which bodes well for upcoming experiments such as
LOFAR, MWA, PAST, and SKA.Comment: 10 pages, 6 figures. Revised version including various cases with
high noise level. Major conclusions unchanged. Accepted for publication in
Ap
The first radial velocity measurements of a microlensing event: no evidence for the predicted binary
The gravitational microlensing technique allows the discovery of exoplanets
around stars distributed in the disk of the galaxy towards the bulge. However,
the alignment of two stars that led to the discovery is unique over the
timescale of a human life and cannot be re-observed. Moreover, the target host
is often very faint and located in a crowded region. These difficulties hamper
and often make impossible the follow-up of the target and study of its possible
companions. Gould et al. (2013) predicted the radial-velocity curve of a binary
system, OGLE-2011-BLG-0417, discovered and characterised from a microlensing
event by Shin et al. (2012). We used the UVES spectrograph mounted at the VLT,
ESO to derive precise radial-velocity measurements of OGLE-2011-BLG-0417. To
gather high-precision on faint targets of microlensing events, we proposed to
use the source star as a reference to measure the lens radial velocities. We
obtained ten radial velocities on the putative V=18 lens with a dispersion of
~100 m/s, spread over one year. Our measurements do not confirm the
microlensing prediction for this binary system. The most likely scenario is
that the assumed V=18 mag lens is actually a blend and not the primary lens
that is 2 magnitude fainter. Further observations and analyses are needed to
understand the microlensing observation and infer on the nature and
characteristics of the lens itself.Comment: submitted on 3rd June 2015 to A&ALette
From stellar to planetary composition: Galactic chemical evolution of Mg/Si mineralogical ratio
The main goal of this work is to study element ratios that are important for
the formation of planets of different masses. We study potential correlations
between the existence of planetary companions and the relative elemental
abundances of their host stars. We use a large sample of FGK-type dwarf stars
for which precise Mg, Si, and Fe abundances have been derived using HARPS
high-resolution and high-quality data. A first analysis of the data suggests
that low-mass planet host stars show higher [Mg/Si] ratios, while giant planet
hosts present [Mg/Si] that is lower than field stars. However, we found that
the [Mg/Si] ratio significantly depends on metallicity through Galactic
chemical evolution. After removing the Galactic evolution trend only the
difference in the [Mg/Si] elemental ratio between low-mass planet hosts and
non-hosts was present in a significant way. These results suggests that
low-mass planets are more prevalent around stars with high [Mg/Si]. Our results
demonstrate the importance of Galactic chemical evolution and indicate that it
may play an important role in the planetary internal structure and composition.Comment: Accepted by A&A (Letter to the Editor
The HARPS search for southern extrasolar planets XXI. Three new giant planets orbiting the metal-poor stars HD5388, HD181720, and HD190984
We present the discovery of three new giant planets around three
metal-deficient stars: HD5388b (1.96M_Jup), HD181720b (0.37M_Jup), and
HD190984b (3.1M_Jup). All the planets have moderately eccentric orbits (ranging
from 0.26 to 0.57) and long orbital periods (from 777 to 4885 days). Two of the
stars (HD181720 and HD190984) were part of a program searching for giant
planets around a sample of ~100 moderately metal-poor stars, while HD5388 was
part of the volume-limited sample of the HARPS GTO program. Our discoveries
suggest that giant planets in long period orbits are not uncommon around
moderately metal-poor stars.Comment: Accepted for publication in A&A (replaced by version with minor
language corrections
- …