
Phys. Plasmas 25, 042307 (2018); https://doi.org/10.1063/1.5024383 25, 042307

© 2018 Author(s).

Bifurcations in the theory of current
transfer to cathodes of DC discharges
and observations of transitions between
different modes
Cite as: Phys. Plasmas 25, 042307 (2018); https://doi.org/10.1063/1.5024383
Submitted: 31 January 2018 • Accepted: 05 April 2018 • Published Online: 30 April 2018

M. S. Bieniek,  D. F. N. Santos, P. G. C. Almeida, et al.

ARTICLES YOU MAY BE INTERESTED IN

Kinetic Bohm criterion in the Tonks-Langmuir model: Assumption or theorem?
Physics of Plasmas 26, 123505 (2019); https://doi.org/10.1063/1.5121022

 Detailed numerical simulation of cathode spots in vacuum arcs: Interplay of different
mechanisms and ejection of droplets
Journal of Applied Physics 122, 163303 (2017); https://doi.org/10.1063/1.4995368

Field to thermo-field to thermionic electron emission: A practical guide to evaluation and
electron emission from arc cathodes
Journal of Applied Physics 114, 063307 (2013); https://doi.org/10.1063/1.4818325

https://images.scitation.org/redirect.spark?MID=176720&plid=1398139&setID=377252&channelID=0&CID=495573&banID=520306861&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=348bc2e449ce57acf1dc6cc7c7fe27d0ca601a00&location=
https://doi.org/10.1063/1.5024383
https://doi.org/10.1063/1.5024383
https://aip.scitation.org/author/Bieniek%2C+M+S
http://orcid.org/0000-0002-2377-766X
https://aip.scitation.org/author/Santos%2C+D+F+N
https://aip.scitation.org/author/Almeida%2C+P+G+C
https://doi.org/10.1063/1.5024383
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5024383
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5024383&domain=aip.scitation.org&date_stamp=2018-04-30
https://aip.scitation.org/doi/10.1063/1.5121022
https://doi.org/10.1063/1.5121022
https://aip.scitation.org/doi/10.1063/1.4995368
https://aip.scitation.org/doi/10.1063/1.4995368
https://doi.org/10.1063/1.4995368
https://aip.scitation.org/doi/10.1063/1.4818325
https://aip.scitation.org/doi/10.1063/1.4818325
https://doi.org/10.1063/1.4818325


Bifurcations in the theory of current transfer to cathodes of DC discharges
and observations of transitions between different modes

M. S. Bieniek, D. F. N. Santos, P. G. C. Almeida, and M. S. Benilova)

Departamento de F�ısica, Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira,
Largo do Munic�ıpio, 9000 Funchal, Portugal and Instituto de Plasmas e Fus~ao Nuclear,
Instituto Superior T�ecnico, Universidade de Lisboa, 1041 Lisboa, Portugal

(Received 31 January 2018; accepted 5 April 2018; published online 30 April 2018)

General scenarios of transitions between different spot patterns on electrodes of DC gas discharges

and their relation to bifurcations of steady-state solutions are analyzed. In the case of cathodes of

arc discharges, it is shown that any transition between different modes of current transfer is related

to a bifurcation of steady-state solutions. In particular, transitions between diffuse and spot modes

on axially symmetric cathodes, frequently observed in the experiment, represent an indication of

the presence of pitchfork or fold bifurcations of steady-state solutions. Experimental observations

of transitions on cathodes of DC glow microdischarges are analyzed and those potentially related

to bifurcations of steady-state solutions are identified. The relevant bifurcations are investigated

numerically and the computed patterns are found to conform to those observed in the course of the

corresponding transitions in the experiment. Published by AIP Publishing.
https://doi.org/10.1063/1.5024383

I. INTRODUCTION

Luminous spots on electrodes of direct current glow and

arc discharges and self-organized patterns of spots represent

a very interesting phenomenon, which is also important for

applications. The presence, or not, of spots on electrodes is a

key point for the operation of any arc device. Self-organized

patterns appearing on cathodes of DC glow microdischarges

are sources of excimer radiation.1,2 Self-organized patterns

on liquid anodes of atmospheric pressure glow microdi-

scharges have been shown to produce a nontrivial cancer-

inhibiting effect.3

The theoretical description of spots and spot patterns on

electrodes of DC glow and arc discharges is based on the

multiplicity of solutions: an adequate theoretical model must

in some cases allow multiple steady-state solutions to exist

for the same conditions (in particular, for the same discharge

current I), with different solutions describing the spotless

(diffuse) mode of current transfer and modes with different

spot configurations.

Some of the multiple solutions may merge, or become

identical at certain values of the control parameter; a bifurca-

tion, or branching, of solutions. Bifurcations of different kinds

of steady-state solutions have been encountered in the theory

and modelling of current transfer to cathodes of DC glow and

high-pressure arc discharges.4,5 An understanding of these

bifurcations is crucial for the computation of the whole pat-

tern of multiple solutions and an analysis of their stability.

The existence of multiple solutions and their bifurca-

tions, in the case of current transfer to cathodes of DC glow

discharges, is a consequence of a strong positive feedback,

which originates from the increasing dependence of the rate

of ionization on electric field.5 In the case of current transfer

to cathodes of arc discharges, the existence of multiple

solutions and their bifurcations is a result of a strong positive

feedback originating from the dependence of the density of

the energy flux from the plasma to the cathode surface on the

surface temperature.5 In contrast, multiple steady-state solu-

tions describing different modes of current transfer to anodes

of glow microdischarges computed recently6 do not reveal

bifurcations. The existence of multiple solutions in this case

is related to the change of sign of the anode sheath voltage.

Thus, the existence, or not, of bifurcations of steady-state

solutions, describing different modes of current transfer to

electrodes of DC glow and arc discharges, is related to the

underlying physics and is therefore of significant interest.

Unfortunately, the question of whether bifurcations

exist has not been addressed in experimental publications.

(Although there are interesting results concerning bifurca-

tions in the pattern of oscillations developing in a DC-driven

semiconductor-gas discharge system;7 see also Refs. 8 and 9

and review 10). It is therefore of interest to analyze available

experimental observations of different modes of current

transfer to electrodes of DC glow and arc discharges with the

aim to eventually identify bifurcations.

The outline of the paper is as follows. In Sec. II, the gen-

eral scenarios of changes between modes on electrodes of

DC gas discharges and their relation to bifurcations of

steady-state solutions are analyzed. Transitions of modes on

cathodes of arc and DC glow, discharges are considered in

Secs. III and IV, respectively. The conclusions are summa-

rized and directions of future work are discussed in Sec. V.

II. SCENARIOS OF TRANSITIONS BETWEEN
DIFFERENT MODES OF CURRENT TRANSFER
TO ELECTRODES OF DC DISCHARGES
AND THEIR RELATION TO BIFURCATIONS

Bifurcations of steady-state solutions manifest in experi-

ments as transitions between modes with different spot pat-

terns, which occur as the discharge current I is varied.a)Email: benilov@uma.pt

1070-664X/2018/25(4)/042307/13/$30.00 Published by AIP Publishing.25, 042307-1

PHYSICS OF PLASMAS 25, 042307 (2018)

https://doi.org/10.1063/1.5024383
https://doi.org/10.1063/1.5024383
https://doi.org/10.1063/1.5024383
mailto:benilov@uma.pt
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5024383&domain=pdf&date_stamp=2018-04-30


One can distinguish two scenarios for transitions between

modes with different spot patterns. First, there are quasi-

stationary, i.e., continuous, and, consequently, reversible tran-

sitions between states where distributions of luminosity over

the electrode surface possess different symmetries. Second,

there are transitions that occur abruptly even for very small

variations of I. Let us consider first the quasi-stationary transi-

tions. All parameters of the discharge, including the discharge

voltage U, vary with I continuously. In particular, the mea-

sured current-voltage characteristic (CVC) UðIÞ is continu-

ous. However, UðIÞ is not smooth at I ¼ I0, where I0 is the

value of I where the distribution of luminosity over the elec-

trode surface changes its symmetry. This transition is caused

by a symmetry-breaking bifurcation that occurs at I ¼ I0,

with stable states existing on both sides of the bifurcation

point.

The above scenario may be illustrated by the following

example. If the discharge vessel is axially symmetric, then

the mathematical problem describing steady-state current

transfer to the electrode admits an axially symmetric (2D)

solution, describing the spotless mode of current transfer,

and a 3D solution, describing a mode with a spot. (More pre-

cisely, there is a family of 3D solutions which differ one

from the other by the azimuthal position of the spot. Other

families of 3D solutions, describing modes with several

spots, may exist as well.) It is a usual situation that the 3D

spot-mode solution branches off from the 2D spotless-mode

solution, a breaking-of-axial-symmetry bifurcation. In terms

of the bifurcation theory, a symmetry breaking represents a

pitchfork bifurcation. Note that a brief summary of informa-

tion from the bifurcation theory relevant to this work can be

found in Appendix of Ref. 4; a further discussion can be

found, e.g., in reviews 5 and 11.

Let us designate by I0 the value of discharge current at

which the bifurcation occurs and assume for definiteness that

the 2D solution is stable for I > I0 and unstable for I < I0. It

may happen that the 3D solution branches off into the range

I < I0, where the 2D solution is unstable [Fig. 1(a)]. This is

the so-called supercritical bifurcation. According to the gen-

eral trends of the bifurcation theory, the 3D solution is stable

(at least) in the vicinity of the state I ¼ I0 in this case. If

such a situation is investigated experimentally and I in the

experiment exceeds I0, the discharge will operate in the 2D

spotless mode and the luminosity distribution over the elec-

trode surface will be axially symmetric. As I is reduced

down to values below I0, the luminosity distribution starts

deviating from being axially symmetric and the deviation

grows proportionally to
ffiffiffiffiffiffiffiffiffiffiffiffi
I0 � I
p

:12 a 3D spot starts being

formed. This transition is shown in Fig. 1(a) by the arrows.

Let us now consider abrupt transitions. The initial and

final states may be of the same or different symmetries, e.g.,

transitions from a 2D spotless state to states with a well

developed 3D spot or a well developed 2D ring spot are both

included in the consideration. Let us designate by I0 the

value of I at which the transition occurs. Since such transi-

tions are accompanied by jumps in the discharge parameters,

the measured CVC UðIÞ is discontinuous at I ¼ I0.

There are two possible reasons for abrupt transitions.

One of them is the loss of stability of the mode that existed

before a transition. Normally, the stability is lost against per-

turbations that have a symmetry lower than that of the ini-

tially existing mode. The other is a fold bifurcation.

Let us consider the first reason. If an abrupt transition

occurs in a monotonic way (i.e., without temporal oscillations

of the electrode luminosity and discharge parameters, in par-

ticular, discharge voltage), then the increment of the perturba-

tions, against which the stability is lost, is real and vanishes at

I ¼ I0. Hence, two steady-state solutions exist in the vicinity

of the state I ¼ I0: a solution describing the initially existing

mode and a solution of a lower symmetry, describing the

mode with the perturbations. Hence, a pitchfork bifurcation

occurs at I ¼ I0. In order to illustrate this scenario, let us

return to the above example and consider the case where the

3D spot-mode solution branches off into the range I > I0,

where the 2D spotless-mode solution is stable as shown in

Fig. 1(b), a subcritical bifurcation. In this case, the 3D solution

is usually unstable in the vicinity of the state I ¼ I0, e.g.,

Appendix of Ref. 4. If the discharge operates in the spotless

mode in the experiment and I is reduced down to values below

I0, the discharge will abruptly switch to another mode, as

depicted by the arrows in Fig. 1(b), and this switching will

occur in a monotonic way, i.e., without temporal oscillations.

Let us now consider the case where an abrupt transition

is accompanied by temporal oscillations. The increment of

FIG. 1. Schematic of supercritical (a)

and subcritical (b) pitchfork bifurca-

tions. Circles: bifurcation points.

Dashed line: unstable sections. Solid

line: stable sections. Arrows: evolution

of regime of current transfer as the dis-

charge current is being reduced.

042307-2 Bieniek et al. Phys. Plasmas 25, 042307 (2018)



the perturbations against which the stability is lost is imagi-

nary at I ¼ I0 in this case. Hence, no steady-state solution

bifurcates from the initially existing mode at the state I ¼ I0,

i.e., the transition is unrelated to a bifurcation of steady-state

solutions.

The other possible reason for abrupt transitions is that

the mode that existed before the transition has a turning point

at I ¼ I0. In other words, this mode has two distinct

branches, which exist in the range I � I0 (or I � I0) and

merge at I ¼ I0, so the mode does not exist for I > I0 (or,

respectively, I < I0). One can say that the mode has reached

the limit of its existence region at I ¼ I0 and turned back, a

fold, or saddle-node, bifurcation. If the discharge operates on

one of the branches of this mode and the current is increased

(or, respectively, decreased), the discharge will abruptly

switch to another mode as the value I ¼ I0 has been reached.

Given that the increment of the relevant instability vanishes at

I ¼ I0,4 one can expect that the switching occurs in a mono-

tonic way.

In summary, quasi-stationary transitions between states

with different symmetries are related to symmetry-breaking

(pitchfork) bifurcations of steady-state solutions; abrupt tran-

sitions are related to bifurcations of steady-state solutions

provided that they occur in a monotonic way, i.e., without

temporal oscillations, and the relevant bifurcations are pitch-

fork or fold.

Discharge vessels are axially symmetric in many experi-

ments. Pitchfork bifurcations of only two types may occur in

such configurations.4,5 First, there is the breaking of axial

symmetry, i.e., branching of a 3D mode, where the distribu-

tion of luminosity over the electrode surface is periodic in

the azimuthal angle with an arbitrary period (2p, or p, or

2p=3, or p=2, etc.), from a 2D mode, where the distribution

of luminosity is axially symmetric. Second, there is the dou-

bling of period with respect to the azimuthal angle, i.e.,

branching from a 3D mode with one of the periods p,

p=2; p=3; p=4, etc., of a 3D mode with double this period. It

follows, in particular, that transitions with changes of sym-

metry of other types cannot occur through pitchfork bifurca-

tions of steady-state solutions, and are always abrupt.

The above general reasoning is valid for mode changes

on cathodes and anodes of any DC discharges. This reason-

ing will be applied to the cases of cathodes of arc and DC

glow discharges in Secs. III and IV, respectively.

III. MODE TRANSITIONS ON CATHODES OF ARC
DISCHARGES

In the case of refractory cathodes of high-pressure arc

discharges, the theory based on the concept of multiple solu-

tions has gone through a detailed experimental validation by

means of different methods, such as spectroscopic measure-

ments, electrostatic probe measurements, electrical and pyro-

metric measurements, and calorimetry; see, e.g., Refs. 13–16

and review 17, and references therein, and also the recent

review 18.

The theory of current transfer to cathodes of arc dis-

charges is simpler from the theoretical point of view than

the theory for the case of glow discharge. The eigenvalue

problem governing the stability of steady-state solutions

against small perturbations is self-adjoint (Hermitian) in this

case.19 This means, in particular, that the spectrum of pertur-

bations is real, a conclusion that was confirmed by numerical

calculations.20,21 It follows that all abrupt transitions are

monotonic in time. Indeed, no oscillations of arc voltage and

luminosity of the cathode surface are observed in the experi-

ments on transitions between diffuse and spot modes on arc

cathodes, e.g., Refs. 15, and 22–24. Hence, all abrupt transi-

tions are related to bifurcations of steady-state solutions. In

more general terms, any transition between different modes,

be it quasi-stationary or abrupt, is related to bifurcations of

steady-state solutions in the case of arc cathodes.

In the simplest case of a rod cathode with a flat tip, a 2D

diffuse mode of current transfer occurs in the experiment at

high currents and a 3D mode with a spot at the edge of the

cathode occurs at low currents, as schematically shown by

solid lines in Fig. 2. (Note that patterns with several spots

have been observed on cathodes of high-pressure arc dis-

charges in more complex arrangements, such as magnetically

rotating arcs.25) The transitions between the two modes are

shown by the arrows in Fig. 2; they are abrupt without tem-

poral oscillations and manifest hysteresis. In agreement with

the reasoning of Sec. II, these transitions represent an indica-

tion of the presence of pitchfork or fold bifurcations of

steady-state solutions.

The latter conclusion may be compared with theoretical

results.19,20 The theory predicts that the diffuse mode and the

3D mode with a spot at the edge of the cathode are the only

modes that contain stable sections. The stable and unstable

sections of each mode are schematically shown in Fig. 2. In

the case of the diffuse mode, these sections are separated by

the state B, where a subcritical pitchfork bifurcation occurs.

In the case of the spot mode, the stable and unstable sections

FIG. 2. Schematic of current-voltage characteristics (CVCs) of the diffuse

mode of current transfer to rod cathodes of high-pressure arc discharges and

of the mode with a spot at the edge of the cathode. The sections shown by

the solid lines and the transitions shown by the arrows are observed in the

experiment.
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are separated by the turning point K, where a fold bifurcation

occurs. Thus, the accurate theory indicates that the transition

from the diffuse mode to the spot mode is related to the

pitchfork bifurcation and the return transition is related to

the fold bifurcation, in agreement with the numerical calcu-

lations20,21 and the reasoning of Sec. II. In our view, this pro-

vides convincing support to the theory of Sec. II for the case

of arc cathodes and no additional modelling is needed.

IV. MODE TRANSITIONS ON CATHODES OF DC GLOW
DISCHARGES

A. State-of-the-art of the theory

In the case of DC glow discharges, multiple solutions

have been shown to exist even in the most basic models and

the solutions computed until now describe many features of

the patterns observed, e.g., Ref. 5 and references therein and

Ref. 26. In particular, the modelling has shown that self-

organization on cathodes of glow microdischarges can occur

not only in xenon, but also in other plasma-producing gases,

a prediction which has been confirmed by subsequent obser-

vations of microdischarges in krypton27 and argon.28 On the

other hand, the comparison between the theory and the

experiment has been merely qualitative until now.

The eigenvalue problem governing the stability of

steady-state solutions against small perturbations is not self-

adjoint for glow cathodes. Therefore, the spectrum of pertur-

bations need not be real. Indeed, a numerical investigation of

stability of 2D modes29 has given a spectrum that contains

both real and complex eigenvalues (and is considerably more

elaborate than the spectrum in the case of arc cathodes). It

follows that abrupt transitions between different spot patterns

may be oscillatory, in contrast to the case of arc cathodes.

Note that this conclusion is consistent with the experiment:

for example, temporal oscillations of the discharge voltage

have been observed in the course of transition from the

Townsend to normal discharge.30–32 Such transitions are

unrelated to bifurcations of steady-state solutions.

B. Analyzing experimental observations

A wealth of self-organized spot patterns and transitions

between different patterns has been observed on cathodes of

DC glow microdischarges.1,2,27,28,33–41 It follows from Sec. II

that a detailed experimental investigation of transitions

between different spot patterns, performed with sufficiently

small steps in I and a sufficiently high temporal resolution, is

needed to unambiguously identify transitions that are related

to bifurcations of steady-state solutions. Unfortunately, such

investigations seem to be absent. The most detailed data are

published in Ref. 40, where the discharge current was adjusted

on the microampere scale. The question as to whether the

observed transitions are quasi-stationary or abrupt with or

without oscillations was not considered. However, transitions

between states of different symmetries that seem to be contin-

uous (i.e., quasi-stationary) have been observed, e.g., transi-

tions between states with a large spot occupying the central

part of the cathode and a ring-like arrangement of four spots

(Ref. 40, Fig. 2), or between a ring spot and a ring-like

arrangement of five spots (Ref. 40, Fig. 5). Question arises as

to if these transitions can occur through pitchfork bifurcations

of steady-state solutions, according to the first scenario

described in Sec. II.

In more general terms, one can try to identify in the

observations1,2,27,33–41 all changes of symmetry that may

occur through pitchfork bifurcations of steady-state solutions.

There is a possibility that these transitions can be realized in

a quasi-stationary way, although this is not always the case as

exemplified by the transition depicted by the vertical arrow

above state B in Fig. 2. On the contrary, transitions that are

unrelated to pitchfork bifurcations of steady-state solutions

surely cannot be realized in a quasi-stationary way, i.e., are

always abrupt.

The discharge vessels are axially symmetric in most of

the above-cited experiments. As discussed in the end of Sec.

II, pitchfork bifurcations of only two types may occur in such

configurations: breaking of axial symmetry and doubling of

period with respect to the azimuthal angle. Hence, one should

try to identify transitions with changes of symmetry of these

two types in the available experimental data.1,2,27,33–41 If such

transitions exist, one should try to find the relevant bifurca-

tions by means of numerical modelling. If the bifurcations

have been found, one will be able to compare the computed

patterns in the vicinity of the bifurcation points with the pat-

terns observed in the experiments.

Most of the transitions reported in Refs. 1, 2, 27, and

33–41 do not belong to either of the two above types. None

of these transitions can occur through bifurcations of steady-

state solutions; hence, these transitions cannot be realized in

a quasi-stationary way. In particular, this applies to the suc-

cessive transitions from a ring arrangement with 4 spots to

arrangements with 5 and then 6 spots and then back to 5, 4,

and 3 spots, which occur as the discharge current is gradually

reduced, e.g., Ref. 40, Fig. 2 and Ref. 1, Fig. 2. It is interest-

ing to point out that this conclusion is consistent with the

experimental observation that the transition between the ring

arrangements of 6, 5, and 4 spots was irreversible: it could

be realized when the current is lowered, but attempts to

increase the current, when the discharge was operating in

these modes, led to the extinction of the discharge.1

However, transitions that do belong to one of the two

possible types of pitchfork bifurcation (with either a breaking

of axial symmetry, or a doubling of period with respect to the

azimuthal angle) have been observed and are listed in Table I.

Note that the two aforementioned transitions observed in Ref.

40 that appear to be quasi-stationary [those between states

with a large spot occupying the central part of the cathode

and a ring-like arrangement of four spots (Ref. 40, Fig. 2) and

between a ring spot and a ring-like arrangement of five spots

(Ref. 40, Fig. 5)] exhibit a breaking of axial symmetry and

therefore can indeed occur through pitchfork bifurcations;

accordingly, these transitions are listed in the table.

The bifurcation that can be responsible for the second

transition in Table I was encountered in Ref. 26. The

period-doubling bifurcation that can be responsible for the

fifth transition has been encountered as well, although for

plasma-producing gases different from xenon, which was

used in the experiments:42 helium (Ref. 43, Fig. 9) and
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krypton (Ref. 27, Fig. 2). In this work, these bifurcations

are numerically investigated in detail and the computed pat-

terns in the vicinity of the bifurcation points are compared

with the experiment. Also reported in this work is the find-

ing and analysis of the bifurcation that corresponds to the

third transition in Table I, for which experimental images

taken with a very fine step over discharge current are avail-

able (Ref. 40, Fig. 5).

C. Numerical modelling

1. The models

Two numerical models of glow discharges are used in

this work, one of them being basic and the other one more

detailed. Both models follow standard lines. For complete-

ness, a summary of differential equations, boundary condi-

tions, and data used for transport and kinetic coefficients is

given in the Appendix. In brief, the models may be described

as follows.

The detailed model comprises equations of conservation

of electrons, singly charged atomic ions, singly charged

molecular ions, excimers, and an effective species for excited

atoms that combines all of the excited states of the 6s mani-

fold (6s½3=2�2; 6s½3=2�1; 6s0½1=2�0, and 6s0½1=2�1), Poisson’s

equation, and an equation for the conservation of electron

energy. Transport equations for charged-particle species and

electron energy density are written in the drift-diffusion

approximation, and transport equations for the excited neutral

species describe diffusion. The geometry considered is that

of the so-called cathode boundary layer discharge device

(Fig. 3). This geometry was used in the vast majority of the

experiments1,2,27,33–41 and comprises a flat cathode and a per-

forated anode, separated by a dielectric, with the radius of the

opening in the anode equal to the radius of the discharge cav-

ity in the dielectric. It is assumed that the charged and excited

particles coming from the plasma are absorbed, and subse-

quently neutralized and deexcited, respectively, at the surfa-

ces of the electrodes and the dielectric.

The above-described detailed model is computationally

costly and therefore not suitable for the serial 3D simulations

required for the purposes of this work. It was shown previ-

ously experimentally36 and computationally26 that self-

organized patterns in the cathode boundary layer discharge

and a discharge with a parallel-plane electrode configuration

are qualitatively similar. An account of detailed chemical

kinetics does not produce a qualitative effect as well.43

Therefore, most of the simulations reported below have been

performed by means of a more basic model, which relies on

a simple chemical kinetic scheme and assumes a parallel-

plane electrode configuration. (We note that the spot patterns

computed in the framework of the basic and detailed models

turned out to be qualitatively similar, in agreement with the

above.) The basic model takes into account only one ion spe-

cies (molecular ions) and the only ionization channel (direct

ionization from the ground state by electron impact) with a

rapid conversion of the produced atomic ions into molecular

ions, and employs the local-field approximation (i.e., the

electron kinetic and transport coefficients are treated as

known functions of the local reduced electric field). The

discharge vessel is assumed to be a cylinder with the end

faces being the electrodes and the lateral surface being insu-

lating. The neutralization of the ions and the electrons at the

dielectric is neglected, so particles coming from the plasma

are reflected back. Note that the effect of the neutralization

has been well understood by now (e.g., Ref. 26 and referen-

ces therein); as far as 3D spots are concerned, it results

in the migration of spots away from the wall in the direction

to the center of the cathode.43 With this in mind, the

assumption of negligible neutralization is sufficient for

TABLE I. Transitions between modes with different spot patterns observed on cathodes of glow microdischarges that are potentially related to bifurcations.

Numbers in the columns “Symmetry” in cases of 3D modes designate the azimuthal period.

Higher-symmetry mode Lower-symmetry mode

Symmetry Pattern Symmetry Pattern Source

2D Central spot 3D, p 2 symmetric spots Reference 1, Figs. 5(c) and 5(d)

2D Central spot 3D, p=2 Ring of 4 spots Reference 1, Fig. 2 and Ref. 40, Fig. 2

2D Ring spot 3D, 2p=5 Ring of 5 spots Reference 40, Fig. 5

2D Central spot, ring spot 3D, 2p=5 Central spot, ring of 5 spots Reference 40, Fig. 6

3D, p=3 Ring of 6 spots 3D, 2p=3 2 rings of 3 spots each Reference 42

FIG. 3. Schematic of the cathode boundary layer discharge vessel. AG is the

axis of symmetry.
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most purposes of this work, while making computations

less costly and easier to analyze.

2. Identifying the relevant bifurcations

Results of simulations reported in this section have been

obtained by means of the basic model for the following con-

ditions: a discharge in xenon under the pressure of 30 Torr,

the electron temperature Te ¼ 1eV, the heavy-particle tem-

perature Th ¼ 300K, the interelectrode gap and discharge

radius both of 0:5mm, and the secondary electron emission

coefficient c ¼ 0:03.

In order to show the place of the bifurcations being

investigated (those corresponding to the second, third, and

fifth transitions in Table I) in the general pattern of self-

organization in DC glow microdischarges, we will briefly

introduce the latter, referring to Ref. 5 for details. In the

framework of the basic model, the problem admits a 1D

solution describing a mode in which all the variables depend

only on the axial variable. This mode exists at all values of

the discharge current and may be termed the fundamental

mode. There are also multidimensional modes which bifur-

cate from, and rejoin, the fundamental mode, the so-called

second-generation modes. Figure 4 depicts the current-

voltage characteristics (CVCs) of the fundamental mode and

the first five second-generation modes. In Fig. 4, hji is the

average current density evaluated over a cross section of the

discharge vessel (which is proportional to the discharge cur-

rent). The schematics illustrate distributions of current den-

sity on the cathode surface associated with each mode. ai

and bi designate bifurcation points where second-generation

modes branch off from and rejoin the fundamental mode.

The modes are ordered by decreasing separation of the

related bifurcation points: the mode designated a1b1 is the

one with the bifurcation points a1 and b1 positioned farthest

apart, the mode a2b2 is the one with the second largest sepa-

ration between the bifurcation points, and so on.

The modes a1b1 and a3b3 have been computed previ-

ously (Refs. 44 and 45, respectively) and are included in Fig.

4 for the sake of completeness; we only note that a1b1 is 3D

with the azimuthal period of 2p, while a3b3 is 2D with one

branch associated with a spot at the center of the cathode and

the other branch with a ring spot at the periphery of the cath-

ode. The other modes, a2b2; a4b4, and a5b5, are 3D with

periods p, 2p=3, and p=2, respectively. The evolution with

discharge current of the cathodic spot patterns associated

with these modes is shown in Fig. 5. Let us consider first the

evolution of the patterns associated with the mode a2b2 [Fig.

4(a)]. The state 151:05 V is positioned in the vicinity of the

bifurcation point a2, and the spot pattern comprises two very

diffuse cold spots at the periphery of the cathode. Further

away from a2, the cold spots expand and at state 151:79 V

start merging. This corresponds to the retrograde section of

the CVC a2b2 seen in Fig. 4(b) in a narrow current range

around 280Am�2. As current is further reduced towards b2, the

two cold spots expand further and the resulting pattern com-

prises two well-pronounced hot spots at the periphery, state

160:4 V. Note that this pattern is similar to those observed in

the experiment; cf. Ref. 1, Fig. 5. Finally, the state 173:93 V is

positioned in the vicinity of the bifurcation point b2 and the hot

spots are very diffuse.

The patterns associated with the mode a4b4 are shown in

Fig. 5(b). The state 151:01 V is positioned in the vicinity of

the bifurcation point a4 and the pattern comprises three very

diffuse cold spots at the periphery. Further away from a4, the

spots become better pronounced and a cold spot appears at

the center, states 151:15 V and 151:53 V. Note that similar

patterns with three hot spots have been observed in the

experiment, cf. Ref. 1, Fig. 5 and Ref. 40, Fig. 2. As current

is further reduced towards b4, the cold spot at the center is

gradually transformed into a hot spot. The hot spots become

well pronounced and a pattern comprising three (hot) spots

at the periphery and a central spot is formed, state 151:74 V

(the pattern is shown in the schematic in Fig. 4). Note that

patterns with three spots at the periphery and a spot at the

center similar to that of the state 151:74 V have also been

observed in the experiment, cf. Ref. 38, Fig. 4. Note also that

the transition between patterns with well-defined cold and

hot spots is not accompanied by retrograde behavior, in

FIG. 4. CVCs. Solid: the 1D (fundamental) mode. Dashed-dotted: 2D mode

a3b3. Other lines: different 3D modes. Circles: bifurcation points. (a) General

view. (b) Details near the point of minimum of the CVC of the 1D mode.
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contrast with the case of the mode a2b2. The state 172:48 V

is positioned in the vicinity of the bifurcation point b4 and

the hot spots are very diffuse.

The evolution of patterns associated with the mode a5b5

shown in Fig. 5(c) follows the same trend as the mode a4b4.

Note that patterns with four spots at the periphery have also

been observed in the experiment, cf. Ref. 1, Fig. 2 and Ref.

40, Fig. 2.

A convenient graphical representation, or bifurcation

diagram, of the modes a4b4 and a5b5 is given in Fig. 6 with

the use of the coordinates ðhji; jcÞ, where jc is the current

density at the center of the cathode. This representation

allows a quick identification of the state where the switching

between patterns comprising cold and hot spots at the center

happens: it is the point in Fig. 6 where the line representing

the mode in question intersects the straight line representing

the 1D mode. For currents higher than the one corresponding

to the switching, the current density at the center is lower

than that corresponding to the 1D mode and the pattern com-

prises a cold spot at the center; jc > hji for lower currents

and the pattern comprises a hot spot at the center.

Breaking of axial symmetry occurring at the state a5

(Figs. 4 and 6) corresponds to the second transition in Table I.

In order to identify bifurcations corresponding to the third and

fifth transitions, one needs to consider third-generation modes,

i.e., 3D modes that branch off from and rejoin second-

generation modes.

Three third-generation modes bifurcating from the mode

a3b3, designated a3;1b3;1; a3;2b3;2, and a3;3b3;3, are shown in

Fig. 7. They branch off from and rejoin that branch of the

mode a3b3 which is associated with a ring spot at the periph-

ery; the bifurcations are breaking of axial symmetry. The

modes a3;1b3;1, a3;2b3;2, and a3;3b3;3 have the periods of

2p=3; 2p=5, and p=3, respectively, and are associated with

spot patterns comprising three spots at the periphery of the

cathode, five spots, and six spots, respectively. Since none of

the patterns shown in Fig. 7 comprise a spot at the center, the

coordinates ðhji; jcÞ would be inconvenient and the coordi-

nates ðhji; jeÞ are used, where je is the current density at a

fixed point on the periphery of the cathode which coincides

with the center of one of the spots.

The evolution of the spot patterns associated with the

mode a3;2b3;2 is shown in Fig. 8. At state 151:82 V, which is

positioned near the bifurcation point a3;2, the ring spot is

slightly non-uniform in the azimuthal direction. Further

FIG. 5. Evolution of distributions of current on the surface of the cathode associated with different modes. (a) Mode a2b2. (b) a4b4. (c) a5b5.

FIG. 6. Bifurcation diagram. Solid: the 1D (fundamental) mode. Dashed, dot-

ted: 3D second-generation modes a4b4 and a5b5. Circles: bifurcation points.
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away from a3;2, the non-uniformity evolves into well-

pronounced spots (states 151:81 V and 151:84 V). The spots

become smaller as the current is further reduced (state

152:26 V). As the bifurcation point b3;2 is approached, the

spots expand once again (state 167:94 V). In the close vicin-

ity of b3;2 (state 170:70 V), a ring spot with a weak non-

uniformity in the azimuthal direction is seen. Note that pat-

terns similar to those shown in Fig. 8 have been observed in

the experiment (Ref. 40, Fig. 5).

The behavior of the modes a3;1b3;1 and a3;3b3;3 follows

the same trend as the behavior of the mode a3;2b3;2. The pat-

terns are similar to experimentally observed patterns com-

prising three and six spots inside the cathode; cf. Ref. 1,

Figs. 2 and 5 and Ref. 40, Fig. 2. Note, however, that the pat-

tern with three spots associated with the mode a3;1b3;1 is sim-

ilar to the pattern with three spots appearing in some states

belonging to a4b4 [states 151:15 V and 151:53 V in Fig. 5(b)]

and it is difficult to know which one of these two modes was

observed in the experiments.1,40 A similar comment applies

to the mode a3;3b3;3.

Breaking of axial symmetry occurring at the states a3;2

and b3;2 in Fig. 7 corresponds to the third transition in Table

I. The bifurcation corresponding to the fifth transition is

period doubling occurring at the state a10;1 in Fig. 9. Here,

a10b10 is a second-generation mode with the period of p=3

and a10;1b10;1 is a third-generation mode with the period of

2p=3. The period doubling at a10;1 occurs as follows: every

second spot gradually moves from the periphery towards the

center of the cathode; eventually a central spot is formed.

(Note that the image illustrating the mode a10;1b10;1 in Fig. 9

corresponds to the situation where the central spot has

already been formed.) This is similar to how the similar

bifurcation occurs in helium (Ref. 43, Fig. 9) and krypton

(Ref. 27, Fig. 2) except that in krypton the central spot is

already present at the bifurcation point a10;1.

D. Comparing the modelling and the experiment

As discussed in Sec. IV C 2, the bifurcation correspond-

ing to the second transition in Table I is breaking of axial

FIG. 7. Bifurcation diagram. Solid: the 1D (fundamental) mode. Dashed: 2D

mode a3b3. Other lines: 3D modes. Circles: bifurcation points.

FIG. 8. Evolution of distribution of current on the surface of the cathode

associated with the mode a3;2b3;2.

FIG. 9. Bifurcation diagram. Solid: the 1D (fundamental) mode. Dashed: 3D

second-generation mode a10b10. Dotted: 3D third-generation mode a10;1b10;1.

Circles: bifurcation points.
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symmetry occurring at the state a5 (Figs. 4 and 6), where a

mode with a ring-like arrangement of four spots (mode a5b5)

branches off from the (fundamental) mode with an axially

symmetric spot occupying the whole cathode surface except

for the periphery (the abnormal discharge). The bifurcation

corresponding to the third transition is breaking of axial sym-

metry occurring at the states a3;2 and b3;2 (Fig. 7), where a

mode with a ring-like arrangement of five spots (mode

a3;2b3;2) branches off from the axially symmetric mode with

a ring spot (a3b3). The bifurcation corresponding to the fifth

transition is period doubling occurring at the state a10;1 (Fig.

9), where the mode a10;1b10;1, which is associated with three

spots at the periphery and three spots closer to the center and

has the period of 2p=3, branches off from the mode a10b10,

which is associated with a ring-like arrangement of 6 identi-

cal spots at the periphery and has the period of p=3.

The computed patterns in the vicinity of the bifurcation

points are compared with the patterns observed in the experi-

ments in Fig. 10. The experimental images shown in Figs.

10(a) and 10(b) have been taken from Figs. 2 and 5, respec-

tively, of Ref. 40. Those shown in Fig. 10(c) have been kindly

provided by Zhu and Niraula;42 we note for completeness that

the geometry in this experiment was the same as in Ref. 40,

the Xe pressure was 100 Torr, and the current and voltage

were nearly the same for both frames: 0:155 mA and 278 V.

The first one of the computed images shown in Fig.

10(a) represents the bifurcation point a5. The other images

correspond to states belonging to the mode a5b5 in the vicin-

ity of a5. The last one of the computed images shown in Fig.

10(b) represents the bifurcation point a3;2, the other images

correspond to states belonging to the mode a3;2b3;2 in the

vicinity of a3;2. The first one of the computed images shown

in Fig. 10(c) represents the bifurcation point a10;1, the other

images correspond to states belonging to the mode a10;1b10;1

in the vicinity of a10;1.

It is seen from Fig. 10 that the computed patterns in the

vicinity of the bifurcation points closely resemble the patterns

observed in the experiments. This supports the hypothesis that

the transitions between patterns of different symmetries

observed in the experiment and listed in the second, third, and

fifth lines of Table I are quasi-stationary and occur through

pitchfork bifurcations.

The transition between the abnormal discharge and a

mode with four spots, shown in Fig. 10(a), resembles the

well-known transition between the abnormal and normal

glow discharges, the difference being that there are four

spots in the 3D mode and not just one as in the normal dis-

charge. A question arises as to what is the reason for this dif-

ference and why just four spots are formed and not two or

three. This question is related to a more general question as

to why patterns with multiple spots have been observed in

glow microdischarges but not in regular-scale glows and is

of significant interest.

It is seen from Fig. 4 that the modes with one, two, and

three spots branch off, at the states a1, a2, and a4, through

subcritical bifurcations. On the other hand, the mode with

four spots at the periphery branches off from the mode with

an axially symmetric spot occupying the whole cathode sur-

face except for the periphery (the abnormal discharge), at the

state a5, through a bifurcation which is supercritical, albeit

marginally. (Note that this is a typical situation: low- and

high-order second-generation modes tend to branch off

through, respectively, subcritical and supercritical bifurca-

tions Ref. 5, Fig. 3.) As discussed in Sec. II, a usual neces-

sary condition for a quasi-stationary transition between two

steady-state modes connected by a pitchfork bifurcation is

that the bifurcation be supercritical. Therefore, it may seem

that the modelling results shown in Fig. 4 explain why the

abnormal discharge in the experiment with microdischarges

goes into the mode with four (rather than one, two, or three)

spots, as seen in Fig. 10(a). On the other hand, the experimen-

tal CVC of this transition [(Ref. 40, Fig. 3(a)] apparently rep-

resents a diagram of a subcritical bifurcation, and so does also

the CVC shown in Ref. 1, Fig. 3(a). Thus, there is a discrep-

ancy between the measurements, on the one hand, and numer-

ical modelling and the usual trend of the bifurcation theory,

on the other. The other discrepancy between the measured

and computed CVCs is that the discharge voltage in the 3D

mode is lower than that in the (axially symmetric) abnormal

mode in the experiment but higher in the modelling.

One could think that the discrepancies are due to simplifi-

cations, employed in the (basic) model used in the above

modelling. In order to clarify this point, the bifurcations occur-

ring at the states a4 and a5 have been recomputed by means of

the detailed model, described in Sec. IV C 1 and Appendix.

The results are shown in Fig. 11. Since the geometry of the dis-

charge vessel and the boundary conditions describing absorp-

tion of the charged particles at the wall invalidate the 1D

solution, the role of the fundamental mode (abnormal dis-

charge) is played by the first 2D mode.5 All second-generation

solutions are 3D, and the first four modes, which have the peri-

ods of 2p, p, 2p=3, and p=2, respectively, are designated

a1b1; a2b2; a4b4, and a5b5 (i.e., the designation a3b3 is

skipped in order to maintain consistency with the designations

of the second-generation modes computed in the framework of

the basic model).

It is seen from Fig. 11 that the patterns of the solutions

are similar to those computed in the framework of the basic

model, in agreement with what was said in Sec. IV C 1. The

account of neutralization of the charged particles at the wall

of the vessel causes the spots to migrate from the edge to the

inside of the cathode, also in agreement with Sec. IV C 1.

The discharge voltage computed in the framework of the

detailed model is significantly higher than the voltage in the

basic model. The bifurcation occurring at a5 becomes mar-

ginally subcritical, while the one at a4 remains clearly sub-

critical, as well as those at a1 and a2, which are not shown in

Fig. 11. The discharge voltage in the 3D modes is slightly

higher than that in the fundamental mode. Thus, the above-

described discrepancy has not been resolved and further

computational and experimental work is needed.

V. SUMMARY AND THE WORK AHEAD

The existence, or not, of bifurcations of steady-state sol-

utions describing different modes of current transfer to elec-

trodes of DC discharges is related to the underlying physics

and is therefore of significant interest. Bifurcations manifest
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themselves in the experiment as transitions between modes

with different spot patterns, which occur as the discharge

current I is varied. Two scenarios of such transitions are pos-

sible: (1) quasi-stationary (continuous) and, consequently,

reversible transitions between states where distributions of

luminosity over the electrode surface possess different sym-

metries and (2) transitions that occur abruptly even for very

small variations of I. Quasi-stationary transitions are related

to a symmetry-breaking (pitchfork) bifurcation. If the dis-

charge vessel is axially symmetric, pitchfork bifurcations of

FIG. 10. Experimentally observed and computed transitions between different modes in xenon.

042307-10 Bieniek et al. Phys. Plasmas 25, 042307 (2018)



only two types may occur: breaking of axial symmetry and

doubling of period with respect to the azimuthal angle.

Abrupt transitions that occur in a monotonic way, i.e., with-

out temporal oscillations, are related to pitchfork or fold

bifurcations. Finally, abrupt transitions accompanied by tem-

poral oscillations are unrelated to a bifurcation of steady-

state solutions.

The above general reasoning is valid for mode changes

on cathodes and anodes of any DC discharges. In the case

of (refractory) cathodes of high-pressure arc discharges, the

eigenvalue problem governing the stability of steady-state

solutions against small perturbations is self-adjoint and its

spectrum is real. Therefore, all abrupt transitions are mono-

tonic in time, in agreement with what is known from the

numerical modelling and the experiment. It follows that

any transition between different modes, be it quasi-

stationary or abrupt, is related to a bifurcation of steady-

state solutions in the case of arc cathodes. Thus, transitions

between diffuse and spot modes of current transfer, fre-

quently observed in the experiment, represent an indication

of the presence of pitchfork or fold bifurcations of steady-

state solutions.

A wealth of spot patterns and transitions between differ-

ent patterns have been observed on cathodes of DC glow

microdischarges.1,2,27,33–41 In particular, transitions between

states of different symmetries that seem to be continuous

(i.e., quasi-stationary) have been observed in Ref. 40. It is

legitimate to hypothesize that such transitions occur through

pitchfork bifurcations (breaking of axial symmetry or period

doubling) of steady-state solutions according to the first

above-mentioned scenario. This hypothesis has been con-

firmed by numerical modelling: the relevant bifurcations

have been investigated numerically and the computed pat-

terns in the vicinity of the bifurcation points are found to

closely resemble the patterns observed in the course of the

transitions in the experiment. Note that new 3D modes of

current transfer were computed in the course of finding the

bifurcations and these new modes are associated with experi-

mental spot patterns reported in the literature.

Thus, available experimental data on multiple modes of

current transfer to cathodes of DC glow and arc discharges

provide clear indications of the presence of pitchfork or fold

bifurcations of steady-state solutions, as predicted by the the-

ory. While the comparison between the theory and the experi-

ment still remains qualitative in the case of DC glow

cathodes, the agreement is convincing and lends further sup-

port to the theory.

A detailed experimental investigation of transitions

between different spot patterns on cathodes of glow micro-

discharges, performed with sufficiently small steps in I and

a sufficiently high temporal resolution and accompanied by

numerical modelling, would allow verification of the above

scenarios. For example, it would be very interesting to ver-

ify the theoretical prediction that successive transitions

between ring arrangements of 4, 5, 6, 5, 4, and 3 spots

shown in, e.g., Ref. 40, Fig. 2 and Ref. 1, Fig. 2 cannot be

realized in a quasi-stationary way, in contrast to the second,

third, and fifth transitions in Table I. It should be stressed

that this prediction is consistent with the experimental

observation that the transition between the ring arrange-

ments of 6, 5, and 4 spots was irreversible.1 Note also that

the theory predicts that any transition, except those between

an axially symmetric mode and a 3D mode and those

between 3D modes with doubling of azimuthal period, will

be abrupt even for very small variations of discharge current

and/or voltage.

Another interesting question to be addressed is the one

discussed in the end of Sec. IV D and concerns the discrep-

ancy between the measured CVC of the transition from the

abnormal discharge and the mode with four spots, on the one

hand, and numerical modelling as well as the usual trend of

the bifurcation theory, on the other hand.
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APPENDIX: EQUATIONS AND BOUNDARY
CONDITIONS

The system of differential equations describing the

detailed model reads

r � Je ¼ Se; Je ¼ �Derne þ ne leru;

r � Je ¼ eJe � ru� Se; Je ¼ �Derne þ ne leru;

r � Jib ¼ Sib; Jib ¼ �Dibrnib � nib libru;

r � Jexb ¼ Sexb; Jexb ¼ �Dexbrnexb;

e0r2u ¼ �e ðni1 þ ni2 � neÞ:
(A1)

FIG. 11. CVCs, detailed model. Solid: the first 2D (the fundamental) mode.

Other lines: 3D modes a4b4 and a5b5. Circles: bifurcation points.
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Here, b ¼ 1; 2; the indexes e; e; i1; i2; ex1; ex2 refer to elec-

trons, electron energy density, atomic ions, molecular ions,

atoms in excited states, and excimers, respectively; na; Ja;
Da; la; Sa are the number density, density of the transport

flux, diffusion coefficient, mobility, and rate of production

of particles per unit time and unit volume of species a
(a ¼ e; i1; i2; ex1; ex2); the electron energy density is defined

as ne ¼ ne�e, where �e is the average electron energy, and coin-

cides with 3/2 of the electron pressure; Je is the density of

electron energy flux; De and le are the so-called electron

energy diffusion coefficient and mobility; Se is the rate of loss

of electron energy per unit time and unit volume due to colli-

sions; u is electric potential; e0 is permittivity of free space,

and e is the elementary charge. The transport coefficients

used are the same as in Ref. 43. The set of reactions com-

prises electron impact ionization from the ground state, an

effective excited atomic state, and the metastable molecular

state; excitation of atoms by electron impact; atomic ion con-

version to molecular ions with neutral atoms playing the role

of the third body; metastable pooling; dissociative recombina-

tion; photon emission from the atomic and molecular excited

states; conversion of excited atoms to excimers with neutral

atoms playing the role of the third body. The kinetic coeffi-

cients are the same as in Ref. 43.

The computation domain corresponds to the cathode

boundary layer discharge device; Fig. 3. Let us introduce

cylindrical coordinates ðr;/; zÞ with the origin at the center

of the cathode and the z-axis coinciding with the axis of the

vessel. The boundary conditions for Eq. (A1) are written in

the conventional form (e.g., Refs. 46 and 47)

Jaz ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffi
8kBTa

pma

r
na; Jez ¼ �cJiz � cJi2z;

Jez ¼ ðEI � 2WÞJez; u ¼ 0 ; Jan ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffi
8kBTa

pma

r
na;

Jen ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffi
8keTe

pme

s
ne; Jen ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
8kBTe

pme

s
ne; u ¼ U;

Jar ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffi
8kBTa

pma

r
na; Jer ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffi
8keTe

pme

s
ne;

Jer ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
8kBTe

pme

s
ne; Ji1r þ Ji2r � Jer ¼ 0;

(A2)

at the surface of the cathode (line AB in Fig. 3), anode

(CDE), and dielectric (BC), respectively. Here, c is the effec-

tive secondary emission coefficient, which is assumed to

characterize all mechanisms of electron emission (due to ion,

photon, and excited species bombardment);48 EI is the ioni-

zation energy of the incident ions; W is the work function of

the cathode surface; U is the discharge voltage; the sub-

scripts r, z, and n denote radial, axial, and normal projections

of the corresponding vectors (the normal n points outwards

from the computation domain); a ¼ i1; i2; ex1; ex2; kB is

Boltzmann’s constant; Ta ¼ Th, where Th is the heavy-

particle temperature (a given parameter); Te ¼ 2�e=3kB is the

electron temperature; and ma are the particle masses.

Results of simulations performed by means of this

model, reported in this work, refer to the following condi-

tions: discharge in xenon under the pressure of 75 Torr; Th

¼ 300 K; c ¼ 0:075, the cavity radius jABj ¼ 0:375 mm, the

thickness of the dielectric jBCj ¼ 0:25 mm, and the height of

the anode jCDj ¼ 0:25 mm.

The system of differential equations describing the basic

model comprises the first and last equations in Eq. (A1) and

the third equation written for only one ion species. Boundary

conditions at the cathode, anode, and dielectric are written

as, respectively,

z ¼ 0 :
@ni

@z
¼ 0; Jez ¼ �cJiz; u ¼ 0 ;

z ¼ h : ni ¼ 0;
@ne

@z
¼ 0; u ¼ U;

r ¼ R :
@ni

@r
¼ @ne

@r
¼ 0 ; Jir � Jer ¼ 0;

(A3)

where ni and Ji are the number density and transport flux

density of the ions. The first boundary condition in the first

line and the second boundary condition in the second line

imply that diffusion fluxes of the attracted particles at the

electrode surfaces are neglected compared to drift. The first

and second boundary conditions in the third line imply that

the neutralization of the ions and the electrons at the dielec-

tric is neglected. The transport and kinetic coefficients used

in the basic model for xenon are taken from Ref. 45.

Numerical results reported in this work have been com-

puted using the commercial finite element software COMSOL

Multiphysics. The detailed model was implemented using the

Plasma module of COMSOL, which was adapted so that it

could be used in combination with a stationary solver and sup-

plemented with a mesh element size based stabilization

method to reduce the P�eclet number. The basic model was

implemented using the Transport of Diluted Species module,

and also solved using a stationary solver.

Two procedures have been used in this work to compute

multiple modes. One of them is the procedure described in Ref.

5, which can be briefly summarized as follows. First, one com-

putes the fundamental mode in a wide range of current. The

stability of the fundamental mode is then tested by the eigen-

value solver, for each value of current, against perturbations

that have a lower symmetry than the fundamental mode. A

bifurcation point is found where the stability of the fundamen-

tal mode is lost to such perturbations. The non-fundamental

mode is computed with a stationary solver using a parametric

sweep of a control parameter (discharge current or voltage),

starting from the vicinity of the bifurcation point.

The other procedure used in this work was as follows. A

parametric sweep of a control parameter is performed on the

fundamental mode with a stationary solver in the 3D compu-

tation domain. (The computation domain is 2D in cases where

a 2D non-fundamental mode branching off from the 1D fun-

damental mode is sought.) The solver computes solutions

along the fundamental mode until it passes a bifurcation point,

where it can switch to a non-fundamental mode. In this way,

one may compute bifurcations and non-fundamental modes

without using the eigenvalue solver.
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