42,043 research outputs found

    Line-profile variations in radial-velocity measurements: Two alternative indicators for planetary searches

    Full text link
    Aims. We introduce two methods to identify false-positive planetary signals in the context of radial-velocity exoplanet searches. The first is the bi-Gaussian cross-correlation function fitting, and the second is the measurement of asymmetry in radial-velocity spectral line information content, Vasy. Methods. We make a systematic analysis of the most used common line profile diagnosis, Bisector Inverse Slope and Velocity Span, along with the two proposed ones. We evaluate all these diagnosis methods following a set of well-defined common criteria and using both simulated and real data. We apply them to simulated cross-correlation functions created with the program SOAP and which are affected by the presence of stellar spots, and to real cross-correlation functions, calculated from HARPS spectra, for stars with a signal originating both in activity and created by a planet. Results. We demonstrate that the bi-Gaussian method allows a more precise characterization of the deformation of line profiles than the standard bisector inverse slope. The calculation of the deformation indicator is simpler and its interpretation more straightforward. More importantly, its amplitude can be up to 30% larger than that of the bisector span, allowing the detection of smaller-amplitude correlations with radial-velocity variations. However, a particular parametrization of the bisector inverse slope is shown to be more efficient on high-signal-to-noise data than both the standard bisector and the bi-Gaussian. The results of the Vasy method show that this indicator is more effective than any of the previous ones, being correlated with the radial-velocity with more significance for signals resulting from a line deformation. Moreover, it provides a qualitative advantage over the bisector, showing significant correlations with RV for active stars for which bisector analysis is inconclusive. (abridged)Comment: 12 pages, 7 figures, accepted for publication in Astronomy and Astrophysics, comments welcom

    Elodie metallicity-biased search for transiting Hot Jupiters I. Two Hot Jupiters orbiting the slightly evolved stars HD118203 and HD149143

    Full text link
    We report the discovery of a new planet candidate orbiting the subgiant star HD118203 with a period of P=6.1335 days. The best Keplerian solution yields an eccentricity e=0.31 and a minimum mass m2sin(i)=2.1MJup for the planet. This star has been observed with the ELODIE fiber-fed spectrograph as one of the targets in our planet-search programme biased toward high-metallicity stars, on-going since March 2004 at the Haute-Provence Observatory. An analysis of the spectroscopic line profiles using line bisectors revealed no correlation between the radial velocities and the line-bisector orientations, indicating that the periodic radial-velocity signal is best explained by the presence of a planet-mass companion. A linear trend is observed in the residuals around the orbital solution that could be explained by the presence of a second companion in a longer-period orbit. We also present here our orbital solution for another slightly evolved star in our metal-rich sample, HD149143, recently proposed to host a 4-d period Hot Jupiter by the N2K consortium. Our solution yields a period P=4.09 days, a marginally significant eccentricity e=0.08 and a planetary minimum mass of 1.36MJup. We checked that the shape of the spectral lines does not vary for this star as well.Comment: Accepted in A&A (6 pages, 6 figures

    Dark Matter directional detection: comparison of the track direction determination

    Full text link
    Several directional techniques have been proposed for a directional detection of Dark matter, among others anisotropic crystal detectors, nuclear emulsion plates, and low-pressure gaseous TPCs. The key point is to get access to the initial direction of the nucleus recoiling due to the elastic scattering by a WIMP. In this article, we aim at estimating, for each method, how the information of the recoil track initial direction is preserved in different detector materials. We use the SRIM simulation code to emulate the motion of the first recoiling nucleus in each material. We propose the use of a new observable, D, to quantify the preservation of the initial direction of the recoiling nucleus in the detector. We show that in an emulsion mix and an anisotropic crystal, the initial direction is lost very early, while in a typical TPC gas mix, the direction is well preserved.Comment: 9 pages, 5 figure

    The contribution of secondary eclipses as astrophysical false positives to exoplanet transit surveys

    Full text link
    We investigate in this paper the astrophysical false-positive configuration in exoplanet-transit surveys that involves eclipsing binaries and giant planets which present only a secondary eclipse, as seen from the Earth. To test how an eclipsing binary configuration can mimic a planetary transit, we generate synthetic light curve of three examples of secondary-only eclipsing binary systems that we fit with a circular planetary model. Then, to evaluate its occurrence we model a population of binaries in double and triple system based on binary statistics and occurrence. We find that 0.061% +/- 0.017% of main-sequence binary stars are secondary-only eclipsing binaries mimicking a planetary transit candidate down to the size of the Earth. We then evaluate the occurrence that an occulting-only giant planet can mimic an Earth-like planet or even smaller planet. We find that 0.009% +/- 0.002% of stars harbor a giant planet that present only the secondary transit. Occulting-only giant planets mimic planets smaller than the Earth that are in the scope of space missions like Kepler and PLATO. We estimate that up to 43.1 +/- 5.6 Kepler Objects of Interest can be mimicked by this new configuration of false positives, re-evaluating the global false-positive rate of the Kepler mission from 9.4% +/- 0.9% to 11.3% +/- 1.1%. We note however that this new false-positive scenario occurs at relatively long orbital period compared with the median period of Kepler candidates.Comment: 9 pages, 4 figures, accepted for publication in A&

    Entropy inequalities and Bell inequalities for two-qubit systems

    Get PDF
    Sufficient conditions for (the non-violation of) the Bell-CHSH inequalities in a mixed state of a two-qubit system are: 1) The linear entropy of the state is not smaller than 0.5, 2) The sum of the conditional linear entropies is non-negative, 3) The von Neumann entropy is not smaller than 0.833, 4) The sum of the conditional von Neumann entropies is not smaller than 0.280.Comment: Errors corrected. See L. Jakobcyk, quant-ph/040908
    • …
    corecore