Several directional techniques have been proposed for a directional detection
of Dark matter, among others anisotropic crystal detectors, nuclear emulsion
plates, and low-pressure gaseous TPCs. The key point is to get access to the
initial direction of the nucleus recoiling due to the elastic scattering by a
WIMP. In this article, we aim at estimating, for each method, how the
information of the recoil track initial direction is preserved in different
detector materials. We use the SRIM simulation code to emulate the motion of
the first recoiling nucleus in each material. We propose the use of a new
observable, D, to quantify the preservation of the initial direction of the
recoiling nucleus in the detector. We show that in an emulsion mix and an
anisotropic crystal, the initial direction is lost very early, while in a
typical TPC gas mix, the direction is well preserved.Comment: 9 pages, 5 figure