273 research outputs found

    Fire Management In Veredas (palm Swamps): New Perspectives On Traditional Farming Systems In Jalapão, Brazil

    Get PDF
    The veredas (palm swamps) of the cerrado biome are legally protected as áreas de Preservação Permanente (Permanent Preservation Areas), and the use of fire in these wetlands is prohibited. We carried out a preliminary assessment of environmental impacts of the local use of agricultural fire in veredas through a collaborative research project in Jalapão (Tocantins, Brazil). We found that "roças de esgoto" (drained peat swamp swidden fields) form the basis of the agricultural system of this region. These fields ensure production throughout the year, provide more income than "roças de toco" (rainfed swidden fields), and may function as a repository of agrobiodiversity on a regional scale. This study suggests that the use of fire in veredas associated with roças de esgoto does not lead to significant deforestation, that is, to the disappearance of the forest physiognomy, but instead helps maintain tree cover during the fallow period, possibly accelerating natural succession.19326929

    Detection Of An Untyped Strain Of Bovine Respiratory Syncytial Virus In A Dairy Herd

    Get PDF
    Bovine respiratory syncytial virus (BRSV) causes important lower respiratory tract illness in calves. According to F and G proteins genetic sequences, three BRSV subgroups have been reported and characterized in several countries, showing differences in its distribution. In Brazil, the virus is widely disseminated throughout the herds and the few characterized isolates revealed the solely occurrence of the subgroup B. This study describes the detection and characterization of an untyped BRSV strain from a twenty-days-old calf from a herd without clinical respiratory disease. Nasal swabs were analyzed by RT-nested PCR for the F and G proteins genes. One sample has amplified the F protein gene. Sequencing and subsequent phylogenetic reconstruction were accomplished, revealing that the strain could not be grouped with any other BRSV subgroups reported. This result may suggest that the BRSV is in constantly evolution, even in Brazil, where the vaccination is not a common practice. More detailed studies about BRSV characterization are necessary to know the virus subgroups distribution among the Brazilian herds to recommend appropriated immunoprophylaxis.35525392550Affonso, I.B., Gatti, S.P., Alexandrino, B., Oliveira, M.C., Medeiros, A.S.R., Buzinaro, M.G., Samara, S.I., Detection of antibodies against bovine respiratory syncytial virus (BRSV) in dairy cattle with different prevalences of bovine herpesvirus type 1 (BHV-1) in São Paulo State, Brazil (2011) Semina: Ciências Agrárias, 32 (1), pp. 295-300. , LondrinaAlmeida, R.S., Domingues, H.G., Spilki, F.R., Larsen, L.E., Hagglund, S., Belák, S., Arns, C.W., Circulation of bovine respiratory syncytial virus in Brazil (2006) Veterinary Record, 158 (18), pp. 632-634. , LondonAlmeida, R.S., Spilki, F.R., Roehe, P.M., Arns, C.W., Detection of Brazilian bovine respiratory syncytial virus strain by a reverse transcriptase-nestedpolymerase chain reaction in experimentally infected calves (2005) Veterinary Microbiology, 105 (2), pp. 131-135. , AmsterdamArns, C.W., Campalans, J., Costa, S.C.B., Domingues, H.G., D'Arce, R.C.F., Almeida, R.S., Characterization of bovine respiratory syncytial virus isolated in Brazil (2003) Brazilian Journal of Medical and Biological Research, 36 (2), pp. 213-218. , Ribeirão PretoBaker, J.C., Frey, M., Bovine respiratory syncytial virus (1985) Veterinary Clinics of North America: Food Animal Practice, 1 (2), pp. 259-272. , PhiladelphiaBidokhti, M.R.M., Travén, M., Ohlson, A., Zarnegar, B., Baule, C., Belák, S., Alenius, S., Liu, L., Phylogenetic analysis of bovine respiratory syncytial viruses from recent outbreaks in feedlot and dairy cattle herds (2012) Archives of Virology, 157 (4), pp. 601-607. , New YorkBunt, A.A., Milne, R.G., Sayaya, T., Verbeek, M., Vetten, H.J., Walsh, J.A., Paramyxoviridae (2005) Virus Taxonomy, Eigth Report of the International Committee on Taxonomy of Viruses, pp. 655-671. , In: FAUQUET, C. M.MAYO, M. A.MANILOFF, J.DESSELBERGER, U.BALL, L. A. (Ed.). London: Elsevier: Academic PressCampalans, J., Arns, C.W., Serological evidence of bovine respiratory syncytial virus in Brazil (1997) Virus Reviews and Research, 2 (1-2), pp. 50-56. , Belo HorizonteDomingues, H.G., Spilki, F.R., Arns, C.W., Detecção molecular e análise filogenética de vírus respiratório sincicial bovino (BRSV) em swabs e tecido pulmonar de bovinos adultos (2011) Pesquisa Veterinária Brasileira, 31 (11), pp. 961-966. , Rio de JaneiroFurze, J.M., Roberts, S.R., Wertz, G.W., Taylor, G., Antigenically distinct G glycoproteins of BRSV strains share a high degree of genetic homogeneity (1997) Virology, 231 (1), pp. 48-58. , New YorkFurze, J., Wertz, G., Lerch, R., Taylor, G., Antigenic heterogeneity of the attachment protein of bovine respiratory syncytial virus (1994) Journal of General Virology, 75 (2), pp. 363-370. , LondonGonçalves, I.P.D., Simanke, A.T., Jost, H.C., Hötzel, I., Dal Soglio, A., Moojen, V., Detection of bovine respiratory syncytial virus in calves of Rio Grande do Sul, Brazil (1993) Ciência Rural, 23 (3), pp. 389-390. , Santa MariaHall, T.A., BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT (1999) Nucleic Acids Symposium Series, 41, pp. 95-98. , OxfordLarsen, L.E., Bovine respiratory syncytial virus (BRSV): A review (2000) Acta Veterinaria Scandinavica, 41 (1), pp. 1-24. , CopenhagenLarsen, L.E., Tjornehoj, K., Viuff, B., Extensive sequence divergence among bovine respiratory syncytial viruses isolated during recurrent outbreaks in closed herds (2000) Journal of Clinical Microbiology, 38 (11), pp. 4222-4227. , WashingtonNettleton, P.F., Gilray, J.A., Caldow, G., Gidlow, J.R., Durkovic, B., Vilcek, S., Recent isolates of Bovine respiratory syncytial virus from Britain are more closely related to isolates from USA than to earlier British and current mainland European isolates (2003) Journal of Veterinary Medicine Series B-Infectious Diseases and Veterinary Public Health, 50 (4), pp. 196-199. , BerlinProzzi, D., Walravens, K., Langedijk, J.P., Daus, F., Kramps, J.A., Letesson, J.J., Antigenic and molecular analyses of the variability of bovine respiratory syncytial virus G glycoprotein (1997) Journal of General Virology, 78 (2), pp. 359-366. , LondonSchrijver, R.S., Daus, F., Kramps, J.A., Langedijk, J.P.M., Buijs, R., Middel, W.G.J., Taylor, G., Van Oirschot, J.T., Subgrouping of bovine respiratory syncytial virus strains detected in lung tissue (1996) Veterinary Microbiology, 53 (3-4), pp. 253-260. , AmsterdamSchrijver, R.S., Langedijk, J.P.M., Poel, V.D.M.W.H., Middel, W.G.J., Kramps, J.A., Van Oirschot, J.T., Antibody responses against the G and F proteins of bovine respiratory syncytial virus after experimental and natural infections (1996) Clinical and Diagnostic Laboratory Immunology, 3 (5), pp. 500-506. , WashingtonSchrijver, R.S., Langedijk, J.P.M., Middel, W.G.J., Kramps, J.A., Rijsewijk, F.A.M., Van Oirschot, J.T., A bovine respiratory syncytial virus strain with mutations in subgroup-specific antigenic domains of the G protein induces partial heterologous protection in cattle (1998) Veterinary Microbiology, 63 (2-4), pp. 159-175. , AmsterdamSpilki, F.R., Almeida, R.S., Domingues, H.G., D'Arce, R.C.F., Ferreira, H.L., Campalans, J., Costa, S.C.B., Arns, C.W., Phylogenetic relationships of Brazilian bovine respiratory syncyctial virus isolates and molecular homology modeling of attachment glycoprotein (2006) Virus Research, 116 (1-2), pp. 161-168. , AmsterdamSpilki, F.R., Arns, C.W., Vírus respiratório sincicial bovino (2008) Acta Scientiae Veterinariae, 36 (3), pp. 197-214. , Porto AlegreStine, L.C., Hoppe, D.K., Clayton, L.K., Sequence conservation in attachment glycoproteins and antigenic diversity among bovine respiratory syncytial virus isolates (1997) Veterinary Microbiology, 54 (3-4), pp. 201-221. , AmsterdamTamura, K., Dudley, J., Nei, M., Kumar, S., MEGA 4: Molecular evolutionary genetics analysis (MEGA) software version 4.0 (2007) Molecular Biology and Evolution, 24 (8), pp. 1596-1599. , ChicagoTaylor, G., Stott, E.J., Furze, J., Ford, J., Sopp, P., Protective epitopes on the fusion protein of respiratory syncytial virus recognized by murine and bovine monoclonal antibodies (1992) Journal of General Virology, 73 (9), pp. 2217-2223. , LondonTaylor, G., Thomas, L.H., Furze, J.M., Cook, R.S., Wyld, S.G., Lerch, R., Hardy, R., Wertz, G.W., Recombinant vaccinia viruses expressing the F, G or N, but not the M2, protein of bovine respiratory syncytial virus (BRSV) induce resistance to BRSV challenge in the calf and protect against the development of pneumonic lesions (1997) Journal of General Virology, 78 (12), pp. 3195-3206. , LondonThomas, L.H., Cook, R.S., Wyld, S.G., Furze, J.M., Taylor, G., Passive protection of gnotobiotic calves using monoclonal antibodies directed at different epitopes on the fusion protein of bovine respiratory syncytial virus (1998) Journal of Infectious Diseases, 177 (4), pp. 874-880. , ChicagoThompson, J.D., Higgins, D.G., Gibson, T.J., Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gag penalties and weight matrix choice (1994) Nucleic Acids Research, 22 (22), pp. 4673-4680. , OxfordValarcher, J.F., Schelcher, F., Bourhy, H., Evolution of bovine respiratory syncytial virus (2000) Journal of Virology, 74 (22), pp. 10714-10728. , WashingtonValarcher, J.F., Taylor, G., Bovine respiratory syncytial virus infection (2007) Veterinary Research, 38 (2), pp. 153-180. , Les UlisPoel, V.D.W., Brand, A., Kramps, J.A., Van Oirschot, J.T., Respiratory syncytial virus infections in human beings and in cattle (1994) Journal of Infectious Diseases, 29 (2), pp. 215-228. , ChicagoVilcek, S., Elvander, M., Ballagi-Pordány, A., Belák, S., Development of nested PCR assays for detection of bovine respiratory syncytial virus in clinical samples (1994) Journal of Clinical Microbiology, 32 (9), pp. 2225-2231. , WashingtonWoelk, C.H., Holmes, E.C., Variable immune-driven natural selection in the attachment (G) glycoprotein of respiratory syncytial virus (RSV) (2001) Journal of Molecular Evolution, 52 (2), pp. 182-192. , ChicagoYaegashi, G., Seimiya, Y.M., Seki, Y., Tsunemitsu, H., Genetic and antigenic analyses of bovine respiratory syncytial virus detected in Japan (2005) Journal of Veterinary Medical Science, 67 (2), pp. 145-150. , Toky

    Review of lobomycosis and lobomycosis-like disease (LLD) in Cetacea from South America. Scientific Committee document SC/60/DW13, International Whaling Commission, June 2008, Santiago, Chile

    Get PDF
    Caused by a yeast-like organism known as Lacazia loboi, Lobomycosis (or lacaziosis) naturally affects humans, common bottlenose dolphins (Tursiops truncates) inhabiting coastal waters from southern Brazil to Gulf of Mexico and Atlantic coast of Florida, as well as botos-cinza (Sotalia guianensis). These species are usually found in coastal waters, subject to runoff provided by large rivers and a considerable burden of associated contaminants. Histological and morphological studies demonstrated that the etiological agent of L. loboi infecting humans is different from the one found to infected dolphins. Moreover, it likely that dolphin-human infections do not occur although infected bottlenose dolphins were from populations engaged in cooperative fishing that involve a relative small number of dolphins and humans. The records of Lobomycosis and Lobomycosis-like disease (LLD) in Tramandaí estuary (29o58´S), Rio Grande do Sul, Brazil, represent the southernmost distribution of L. loboi. On the other hand, the northernmost distribution of this disease is reported in the southern portion of Indian River Lagoon (27°25´N), Florida, USA. LLD seems to be more widespread, infecting both toothed small cetaceans and baleen whales, from the tropical Atlantic to the Pacific. Future studies should evaluate the association with impaired immune function in affected dolphins and the emergency of Lobomycosis. It may be associated with an immunosuppressive factor of environmental origin, such as exposure to pesticides or other agricultural or industrial contaminants, introduced through runoff or point sources of pollution, altering conditions to favour disease emergence. Lobomycosis should be assigned as neglected tropical disease, as should be the case of LLD, if future investigations indicate their connection as an emerging pathogen, its pathogenicity and environment requirements

    Magnetic Field Amplification in Galaxy Clusters and its Simulation

    Get PDF
    We review the present theoretical and numerical understanding of magnetic field amplification in cosmic large-scale structure, on length scales of galaxy clusters and beyond. Structure formation drives compression and turbulence, which amplify tiny magnetic seed fields to the microGauss values that are observed in the intracluster medium. This process is intimately connected to the properties of turbulence and the microphysics of the intra-cluster medium. Additional roles are played by merger induced shocks that sweep through the intra-cluster medium and motions induced by sloshing cool cores. The accurate simulation of magnetic field amplification in clusters still poses a serious challenge for simulations of cosmological structure formation. We review the current literature on cosmological simulations that include magnetic fields and outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure

    SiPMs coated with TPB : coating protocol and characterization for NEXT

    Get PDF
    Silicon photomultipliers (SiPM) are the photon detectors chosen for the tracking readout in NEXT, a neutrinoless {\beta}{\beta} decay experiment which uses a high pressure gaseous xenon time projection chamber (TPC). The reconstruction of event track and topology in this gaseous detector is a key handle for background rejection. Among the commercially available sensors that can be used for tracking, SiPMs offer important advantages, mainly high gain, ruggedness, cost-effectiveness and radio-purity. Their main drawback, however, is their non sensitivity in the emission spectrum of the xenon scintillation (peak at 175 nm). This is overcome by coating these sensors with the organic wavelength shifter tetraphenyl butadienne (TPB). In this paper we describe the protocol developed for coating the SiPMs with TPB and the measurements performed for characterizing the coatings as well as the performance of the coated sensors in the UV-VUV range.Comment: Submitted to the Journal of Instrumentation on december 26th 201

    Nuclear Interactions Of Super High Energy Cosmic-rays Observed In Mountain Emulsion Chambers

    Get PDF
    Here we present a summary of joint discussions on the results of three mountain experiments with large-scale emulsion chambers, at Pamir, Mt. Fuji and Chacaltaya. Observations cover gamma quanta, hadrons and their clusters (called "families"). The following topics are covered, concerning the characteristics of nuclear interactions the energy region 1014-1016 eV: (i) rapid dissipation seen in atmospheric diffusion of high-energy cosmic-rays; (ii) multiplicity and Pt increase in produced pi-mesons in the fragmentation region; (iii) existence of large-Pt jets, (iv) extremely hadron-rich family of the Centauro type; (v) exotic phenomena in the extremely high energy region beyond 1016 eV. © 1981.1911125(1977) Acta Univ. Lodz ser. II, (60)(1973) 13th Int. Cosmic-ray Conf., 3, p. 2228(1975) 14th Int. Cosmic-Ray Conf., 7, p. 2365(1979) AIP Conf. Proc. no. 49, p. 334(1979) 16th Int. Cosmic-ray Conf., 6, p. 344(1979) 16th Int. Cosmic-ray Conf., 7, p. 6816th Int. Cosmic-ray Conf. (1979) 16th Int. Cosmic-ray Conf., 7, p. 284(1979) 16th Int. Cosmic-ray Conf., 7, p. 294(1979) 16th Int. Cosmic-ray Conf., 13, p. 87(1979) 16th Int. Cosmic-ray Conf., 13, p. 92(1979) 16th Int. Cosmic-ray Conf., 13, p. 98(1979) AIP Conf. Proc. no. 49, p. 94(1979) AIP Conf. Proc. no. 49, p. 145(1979) AIP Conf. Proc. no. 49, p. 317(1979) 16th Int. Cosmic-ray Conf., 6, p. 350(1979) 16th Int. Cosmic-ray Conf., 6, p. 356(1979) 16th Int. Cosmic-ray Conf., 6, p. 362Nikolsky, Proc. 9th Int. High-energy Symp. (1978) CSSR, 21. , ToborMiyake, (1978) Proc. 19th Int. Conf. on High-energy physics, p. 433Vernov, (1977) Physica, 3, p. 1601Khristiansen, (1978) JETP Lett., 28, p. 124(1973) 13th Int. Cosmic-ray Conf., 3, p. 2219Izv. Acad. Nauk USSR, ser Phys. (1974) Izv. Acad. Nauk USSR, ser Phys., 38, p. 918(1975) 14th Int. Cosmic-ray Conf., 7, p. 2365(1979) 16th Int. Cosmic-ray Conf., 7, p. 68Dunaevsky, Urysson, Emelyanov, Shorin, Tashimov, (1975) FIAN preprint no. 150Dunaevsky, Urysson, Emelyanov, Shorin, Tashinov, (1979) Acta Univ. Lodz ser. II, (60), p. 199Ivanenko, Kanevskya, Roganova, (1978) JETP Lett., 40, p. 704Ivanenko, Kanevsky, Roganova, (1979) 16th Int. Cosmic-ray Conf., 7, p. 101Ivanenko, Kanevsky, Roganova, (1979) 16th Int. Cosmic-ray Conf., 7, p. 198Wrotniak, (1977) Acta Univ. Lodz ser. II, (60), p. 165Krys, Tomaszevski, Wrotniak, (1979) 16th Int. Cosmic-ray Conf., 7, p. 182Krys, Tomaszevski, Wrotniak, (1979) 16th Int. Cosmic-ray Conf., 7, p. 186Fomin, Kempa, Khristiansen, Levina, Piotrowska, Wdowczyk, (1977) 15th Int. Cosmic-ray Conf., 7, p. 248Fomin, Kempa, Khristiansen, Levina, Piotrowska, Wdowczyk, (1979) 16th Int. Cosmic-ray Conf., 13, p. 82Azimov, Mullazhanov, Yuldashbayev, (1979) 16th Int. Cosmic-ray Conf., 7, p. 262Azimov, Mullazhanov, Yuldashbayev, (1977) Acta Univ. Lodz ser. II, (60), p. 275Kasahara, Torri, Yuda, (1979) 16th Int. Cosmic-ray Conf., 13, p. 70Kasahara, Torii, Yuda, (1979) 16th Int. Cosmic-ray Conf., 13, p. 79Shibata, (1979) 16th Int. Cosmic-ray Conf., 7, p. 176H. Semba, T. Shibata and T. Tabuki, Suppl. Prog. Theor. Phys., to be publishedZhdanov, Roinishvilli, Smorodin, Tomaszevski, (1975) FIAN preprint no. 163Lattes, Fujimoto, Hasegawa, Hadronic interactions of high energy cosmic-ray observed by emulsion chambers (1980) Physics Reports, 65, p. 152Ellsworth, Gaisser, Yodh, (1981) Phys. Rev., 23 D, p. 764Baradzei, Smorodin, (1974) FIAN preprint nos. 103, 104Baradzei, Smorodin, (1977) Acta Univ. Lodz ser. II, (60), p. 51Zhdanov, (1980) FIAN preprint no. 140H. Semba, T. Shibata and T. Tabuki, Suppl. Prog. Theor. Phys., to be publishedShibata, (1980) Phys. Rev., 22 D, p. 100Slavatinsky, (1980) Proc. 7th European Symp. on Cosmic rays, , Leningrad, to be published(1979) AIP Conference Proc. no. 49, p. 145Azimov, Abduzhamilov, Chudakov, (1963) JETP (Sov. Phys.), 45, p. 40713th Int. Cosmic-ray Conf. (1973) 13th Int. Cosmic-ray Conf., 5, p. 326Acharya, Rao, Sivaprasad, Rao, (1979) 16th Int. Cosmic-ray Conf., 6, p. 289Ellsworth, Goodman, Yodh, Gaisser, Stanev, (1981) Phys. Rev., 23 D, p. 771Bariburina, Guseva, Denisova, (1980) Acta Univ. Lodz, 1, p. 9415th Int. Cosmic-ray Conf. (1977) 15th Int. Cosmic-ray Conf., 7, p. 184(1979) AIP Conf. Proc. no. 49, p. 33
    corecore