44 research outputs found

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Solubility of Flurbiprofen in Supercritical Carbon Dioxide

    Get PDF
    Equilibrium solubility of flurbiprofen, a nonsteroidal antiinflammatory agent, in supercritical carbon dioxide was measured by a static analytical method in the pressure range from (8.0 to 25.0) MPa, at temperatures of (303.0, 313.0, and 323.0) K. The cosolvent effect of ethanol in the solubility of the bioactive compound in supercritical carbon dioxide was investigated at 18 MPa and 313 K. The results obtained have a potential application in supercritical processes for this drug. Experimental solubility data were correlated with an empirical density-based Chrastil model

    Effect of surface mucins on <i>T. cruzi in vivo</i> development in the digestive tract of <i>Rhodnius prolixus</i>.

    No full text
    <p>Insects were fed on citrated, complement-inactivated human blood containing 2×10<sup>5</sup> flagellates/ml. Each mucin peptide was added to the bloodmeal at a concentration of 30 µg/ml and insects dissected as days 7, 14 or 21 post feeding. Each point represents mean±S.D of flagellates/ml in the whole gut of 10 insects. Asterisk represents experimental groups with statistical significance compared to the control.</p
    corecore