34 research outputs found

    Improved Canine and Human Visceral Leishmaniasis Immunodiagnosis Using Combinations of Synthetic Peptides in Enzyme-Linked Immunosorbent Assay

    Get PDF
    Visceral leishmaniasis is endemic in many areas of tropical and subtropical America where it constitutes a significant public health problem. It is usually diagnosed by enzyme-linked immunosorbent assays (ELISA) using crude Leishmania antigens, but a variety of other immunological methods may also be applied. Although these approaches are useful, historically their sensitivity and specificity have often been compromised by the use of complex mixtures of antigens. In this context, the use of combinations of purified, well-characterized antigens appears preferable and may yield better results. In the present study, combinations of peptides derived from the previously described Leishmania diagnostic antigens A2, NH, LACK and K39 were used in ELISA against sera from 106 dogs and 44 human patients. Improved sensitivities and specificities, close to 100%, for both sera of patients and dogs was observed for ELISA using some combinations of the peptides, including the detection of VL in dogs with low anti-Leishmania antibody titers and asymptomatic infection. So, the use of combinations of B cell predicted synthetic peptides derived from antigens A2, NH, LACK and K39 may provide an alternative for improved sensitivities and specificities for immunodiagnostic assays of VL

    Impact of Continuous Axenic Cultivation in Leishmania infantum Virulence

    Get PDF
    Experimental infections with visceral Leishmania spp. are frequently performed referring to stationary parasite cultures that are comprised of a mixture of metacyclic and non-metacyclic parasites often with little regard to time of culture and metacyclic purification. This may lead to misleading or irreproducible experimental data. It is known that the maintenance of Leishmania spp. in vitro results in a progressive loss of virulence that can be reverted by passage in a mammalian host. In the present study, we aimed to characterize the loss of virulence in culture comparing the in vitro and in vivo infection and immunological profile of L. infantum stationary promastigotes submitted to successive periods of in vitro cultivation. To evaluate the effect of axenic in vitro culture in parasite virulence, we submitted L. infantum promastigotes to 4, 21 or 31 successive in vitro passages. Our results demonstrated a rapid and significant loss of parasite virulence when parasites are sustained in axenic culture. Strikingly, the parasite capacity to modulate macrophage activation decreased significantly with the augmentation of the number of in vitro passages. We validated these in vitro observations using an experimental murine model of infection. A significant correlation was found between higher parasite burdens and lower number of in vitro passages in infected Balb/c mice. Furthermore, we have demonstrated that the virulence deficit caused by successive in vitro passages results from an inadequate capacity to differentiate into amastigote forms. In conclusion, our data demonstrated that the use of parasites with distinct periods of axenic in vitro culture induce distinct infection rates and immunological responses and correlated this phenotype with a rapid loss of promastigote differentiation capacity. These results highlight the need for a standard operating protocol (SOP) when studying Leishmania species

    Leishmania infantum Asparagine Synthetase A Is Dispensable for Parasites Survival and Infectivity

    Get PDF
    A growing interest in asparagine (Asn) metabolism has currently been observed in cancer and infection fields. Asparagine synthetase (AS) is responsible for the conversion of aspartate into Asn in an ATP-dependent manner, using ammonia or glutamine as a nitrogen source. There are two structurally distinct AS: the strictly ammonia dependent, type A, and the type B, which preferably uses glutamine. Absent in humans and present in trypanosomatids, AS-A was worthy of exploring as a potential drug target candidate. Appealingly, it was reported that AS-A was essential in Leishmania donovani, making it a promising drug target. In the work herein we demonstrate that Leishmania infantum AS-A, similarly to Trypanosoma spp. and L. donovani, is able to use both ammonia and glutamine as nitrogen donors. Moreover, we have successfully generated LiASA null mutants by targeted gene replacement in L. infantum, and these parasites do not display any significant growth or infectivity defect. Indeed, a severe impairment of in vitro growth was only observed when null mutants were cultured in asparagine limiting conditions. Altogether our results demonstrate that despite being important under asparagine limitation, LiAS-A is not essential for parasite survival, growth or infectivity in normal in vitro and in vivo conditions. Therefore we exclude AS-A as a suitable drug target against L. infantum parasites
    corecore