487 research outputs found
3D-partition functions on the sphere: exact evaluation and mirror symmetry
We study N = 4 quiver theories on the three-sphere. We compute partition
functions using the localisation method by Kapustin et al. solving exactly the
matrix integrals at finite N, as functions of mass and Fayet-Iliopoulos
parameters. We find a simple explicit formula for the partition function of the
quiver tail T(SU(N)). This formula opens the way for the analysis of
star-shaped quivers and their mirrors (that are the Gaiotto-type theories
arising from M5 branes on punctured Riemann surfaces). We provide
non-perturbative checks of mirror symmetry for infinite classes of theories and
find the partition functions of the TN theory, the building block of
generalised quiver theories.Comment: 30 pages, 12 figures. v2: added references, minor change
Discovery of VHE Gamma Radiation from IC443 with the MAGIC Telescope
We report the detection of a new source of very high energy (VHE, E_gamma >=
100GeV) gamma-ray emission located close to the Galactic Plane, MAGIC
J0616+225, which is spatially coincident with SNR IC443. The observations were
carried out with the MAGIC telescope in the periods December 2005 - January
2006 and December 2006 - January 2007. Here we present results from this
source, leading to a VHE gamma-ray signal with a statistical significance of
5.7 sigma in the 2006/7 data and a measured differential gamma-ray flux
consistent with a power law, described as dN_gamma/(dA dt dE) = (1.0 +/-
0.2)*10^(-11)(E/0.4 TeV)^(-3.1 +/- 0.3) cm^(-2)s^(-1)TeV^(-1). We briefly
discuss the observational technique used and the procedure implemented for the
data analysis. The results are put in the perspective of the multiwavelength
emission and the molecular environment found in the region of IC443.Comment: Accepted by ApJ Letter
Determining R-parity violating parameters from neutrino and LHC data
In supersymmetric models neutrino data can be explained by R-parity violating
operators which violate lepton number by one unit. The so called bilinear model
can account for the observed neutrino data and predicts at the same time
several decay properties of the lightest supersymmetric particle. In this paper
we discuss the expected precision to determine these parameters by combining
neutrino and LHC data and discuss the most important observables. We show that
one can expect a rather accurate determination of the underlying R-parity
parameters assuming mSUGRA relations between the R-parity conserving ones and
discuss briefly also the general MSSM as well as the expected accuracies in
case of a prospective e+ e- linear collider. An important observation is that
several parameters can only be determined up to relative signs or more
generally relative phases.Comment: 13 pages, 13 figure
Complexity and dynamics of the winemaking bacterial communities in berries, musts, and wines from apulian grape cultivars through time and space
Currently, there is very little information available regarding the microbiome associated with the wine production chain. Here, we used an amplicon sequencing approach based on high-throughput sequencing (HTS) to obtain a comprehensive assessment of the bacterial community associated with the production of three Apulian red wines, from grape to final product. The relationships among grape variety, the microbial community, and fermentation was investigated. Moreover, the winery microbiota was evaluated compared to the autochthonous species in vineyards that persist until the end of the winemaking process. The analysis highlighted the remarkable dynamics within the microbial communities during fermentation. A common microbial core shared among the examined wine varieties was observed, and the unique taxonomic signature of each wine appellation was revealed. New species belonging to the genus Halomonas were also reported. This study demonstrates the potential of this metagenomic approach, supported by optimized protocols, for identifying the biodiversity of the wine supply chain. The developed experimental pipeline offers new prospects for other research fields in which a comprehensive view of microbial community complexity and dynamics is desirable.Peer ReviewedPostprint (published version
CDK1 is a synthetic lethal target for KRAS mutant tumours.
Activating KRAS mutations are found in approximately 20% of human cancers but no RAS-directed therapies are currently available. Here we describe a novel, robust, KRAS synthetic lethal interaction with the cyclin dependent kinase, CDK1. This was discovered using parallel siRNA screens in KRAS mutant and wild type colorectal isogenic tumour cells and subsequently validated in a genetically diverse panel of 26 colorectal and pancreatic tumour cell models. This established that the KRAS/CDK1 synthetic lethality applies in tumour cells with either amino acid position 12 (p.G12V, pG12D, p.G12S) or amino acid position 13 (p.G13D) KRAS mutations and can also be replicated in vivo in a xenograft model using a small molecule CDK1 inhibitor. Mechanistically, CDK1 inhibition caused a reduction in the S-phase fraction of KRAS mutant cells, an effect also characterised by modulation of Rb, a master control of the G1/S checkpoint. Taken together, these observations suggest that the KRAS/CDK1 interaction is a robust synthetic lethal effect worthy of further investigation
Sneutrino dark matter in low-scale seesaw scenarios
We consider supersymmetric models in which sneutrinos are viable dark matter candidates. These are either simple extensions of the Minimal Supersymmetric Standard Model with additional singlet superfields, such as the inverse or linear seesaw, or a model with an additional U(1) group. All of these models can accomodate the observed small neutrino masses and large mixings. We investigate the properties of sneutrinos as dark matter candidates in these scenarios. We check for phenomenological bounds, such as correct relic abundance, consistency with direct detection cross section limits and laboratory constraints, among others lepton flavour violating (LFV) charged lepton decays. While inverse and linear seesaw lead to different results for LFV, both models have very similar dark matter phenomenology, consistent with all experimental bounds. The extended gauge model shows some additional and peculiar features due to the presence of an extra gauge boson Z' and an additional light Higgs. Specifically, we point out that for sneutrino LSPs there is a strong constraint on the mass of the Z' due to the experimental bounds on the direct detection scattering cross section
Sfrp3 modulates stromal-epithelial crosstalk during mammary gland development by regulating Wnt levels
Mammary stroma is essential for epithelial morphogenesis and development. Indeed, postnatal mammary gland (MG) development is controlled locally by the repetitive and bi-directional cross-talk between the epithelial and the stromal compartment. However, the signalling pathways involved in stromal–epithelial communication are not entirely understood. Here, we identify Sfrp3 as a mediator of the stromal–epithelial communication that is required for normal mouse MG development. Using Drosophila wing imaginal disc, we demonstrate that Sfrp3 functions as an extracellular transporter of Wnts that facilitates their diffusion, and thus, their levels in the boundaries of different compartments. Indeed, loss of Sfrp3 in mice leads to an increase of ductal invasion and branching mirroring an early pregnancy state. Finally, we observe that loss of Sfrp3 predisposes for invasive breast cancer. Altogether, our study shows that Sfrp3 controls MG morphogenesis by modulating the stromal-epithelial cross-talk during pubertal development
Persistent acceleration in global sea-level rise since the 1960s
Previous studies reconstructed twentieth-century global mean sea level (GMSL) from sparse tide-gauge records to understand whether the recent high rates obtained from satellite altimetry are part of a longer-term acceleration. However, these analyses used techniques that can only accurately capture either the trend or the variability in GMSL, but not both. Here we present an improved hybrid sea-level reconstruction during 1900–2015 that combines previous techniques at time scales where they perform best. We find a persistent acceleration in GMSL since the 1960s and demonstrate that this is largely (~76%) associated with sea-level changes in the Indo-Pacific and South Atlantic. We show that the initiation of the acceleration in the 1960s is tightly linked to an intensification and a basin-scale equatorward shift of Southern Hemispheric westerlies, leading to increased ocean heat uptake, and hence greater rates of GMSL rise, through changes in the circulation of the Southern Ocean
Quantitative Mass Spectrometry Analysis Reveals Similar Substrate Consensus Motif for Human Mps1 Kinase and Plk1
Background Members of the Mps1 kinase family play an essential and evolutionarily conserved role in the spindle assembly checkpoint (SAC), a surveillance mechanism that ensures accurate chromosome segregation during mitosis. Human Mps1 (hMps1) is highly phosphorylated during mitosis and many phosphorylation sites have been identified. However, the upstream kinases responsible for these phosphorylations are not presently known. Methodology/Principal Findings Here, we identify 29 in vivo phosphorylation sites in hMps1. While in vivo analyses indicate that Aurora B and hMps1 activity are required for mitotic hyper-phosphorylation of hMps1, in vitro kinase assays show that Cdk1, MAPK, Plk1 and hMps1 itself can directly phosphorylate hMps1. Although Aurora B poorly phosphorylates hMps1 in vitro, it positively regulates the localization of Mps1 to kinetochores in vivo. Most importantly, quantitative mass spectrometry analysis demonstrates that at least 12 sites within hMps1 can be attributed to autophosphorylation. Remarkably, these hMps1 autophosphorylation sites closely resemble the consensus motif of Plk1, demonstrating that these two mitotic kinases share a similar substrate consensus. Conclusions/Significance hMps1 kinase is regulated by Aurora B kinase and its autophosphorylation. Analysis on hMps1 autophosphorylation sites demonstrates that hMps1 has a substrate preference similar to Plk1 kinase
- …
