501 research outputs found
Far-infrared line spectra of active galaxies from the Herschel/PACS Spectrometer: the complete database
We present a coherent database of spectroscopic observations of far-IR
fine-structure lines from the Herschel/PACS archive for a sample of 170 local
AGN, plus a comparison sample of 20 starburst galaxies and 43 dwarf galaxies.
Published Spitzer/IRS and Herschel/SPIRE line fluxes are included to extend our
database to the full 10-600 spectral range. The observations are
compared to a set of CLOUDY photoionisation models to estimate the above
physical quantities through different diagnostic diagrams. We confirm the
presence of a stratification of gas density in the emission regions of the
galaxies, which increases with the ionisation potential of the emission lines.
The new [OIV]25.9/[OIII]88 vs [NeIII]15.6/[NeII]12.8 diagram is proposed as the best diagnostic to separate: AGN activity
from any kind of star formation; and low-metallicity dwarf galaxies from
starburst galaxies. Current stellar atmosphere models fail to reproduce the
observed [OIV]25.9/[OIII]88 ratios, which are much higher when
compared to the predicted values. Finally, the ([NeIII]15.6 +
[NeII]12.8)/([SIV]10.5 + [SIII]18.7) ratio is proposed as
a promising metallicity tracer to be used in obscured objects, where optical
lines fail to accurately measure the metallicity. The diagnostic power of mid-
to far-infrared spectroscopy shown here for local galaxies will be of crucial
importance to study galaxy evolution during the dust-obscured phase at the peak
of the star formation and black-hole accretion activity (). This
study will be addressed by future deep spectroscopic surveys with present and
forthcoming facilities such as JWST, ALMA, and SPICA.Comment: Accepted for publication in the ApJ
Heating of the molecular gas in the massive outflow of the local ultraluminous-infrared and radio-loud galaxy 4C12.50
We present a comparison of the molecular gas properties in the outflow vs. in
the ambient medium of the local prototype radio-loud and ultraluminous-infrared
galaxy 4C12.50 (IRAS13451+1232), using new data from the IRAM Plateau de Bure
interferometer and 30m telescope, and the Herschel space telescope. Previous
H_2 (0-0) S(1) and S(2) observations with the Spitzer space telescope had
indicated that the warm (~400K) molecular gas in 4C12.50 is made up of a
1.4(+-0.2)x10^8 M_sun ambient reservoir and a 5.2(+-1.7)x10^7 M_sun outflow.
The new CO(1-0) data cube indicates that the corresponding cold (25K) H_2 gas
mass is 1.0(+-0.1)x10^10 M_sun for the ambient medium and <1.3x10^8 M_sun for
the outflow, when using a CO-intensity-to-H_2-mass conversion factor alpha of
0.8 M_sun /(K km/s pc^2). The combined mass outflow rate is high, 230-800
M_sun/yr, but the amount of gas that could escape the galaxy is low. A
potential inflow of gas from a 3.3(+-0.3)x10^8 M_sun tidal tail could moderate
any mass loss. The mass ratio of warm-to-cold molecular gas is >= 30 times
higher in the outflow than in the ambient medium, indicating that a
non-negligible fraction of the accelerated gas is heated to temperatures at
which star formation is inefficient. This conclusion is robust against the use
of different alpha factor values, and/or different warm gas tracers (H_2 vs.
H_2 plus CO): with the CO-probed gas mass being at least 40 times lower at 400K
than at 25K, the total warm-to-cold mass ratio is always lower in the ambient
gas than in the entrained gas. Heating of the molecular gas could facilitate
the detection of new outflows in distant galaxies by enhancing their emission
in intermediate rotational number CO lines.Comment: A&A, in pres
Outflows of hot molecular gas in ultra-luminous infra-red galaxies mapped with VLT-SINFONI
We present the detection and morphological characterization of hot molecular
gas outflows in nearby ultra-luminous infrared galaxies, using the near-IR
integral-field spectrograph SINFONI on the VLT. We detect outflows observed in
the 2.12 micron H 1-0 S(1) line for three out of four ULIRGs analyzed;
IRAS 12112+0305, 14348-1447, and 22491-1808. The outflows are mapped on scales
of 0.7-1.6 kpc, show typical outflow velocities of 300-500 km/s, and appear to
originate from the nuclear region. The outflows comprise hot molecular gas
masses of ~6-8x10 M(sun). Assuming a hot-to-cold molecular gas mass ratio
of 6x10, as found in nearby luminous IR galaxies, the total (hot+cold)
molecular gas mass in these outflows is expected to be ~1x10 M(sun). This
translates into molecular mass outflow rates of ~30-85 M(sun)/yr, which is a
factor of a few lower than the star formation rate in these ULIRGs. In
addition, most of the outflowing molecular gas does not reach the escape
velocity of these merger systems, which implies that the bulk of the outflowing
molecular gas is re-distributed within the system and thus remains available
for future star formation. The fastest H outflow is seen in the
Compton-thick AGN of IRAS 14348-1447, reaching a maximum outflow velocity of
~900 km/s. Another ULIRG, IRAS 17208-0014, shows asymmetric H line
profiles different from the outflows seen in the other three ULIRGs. We discuss
several alternative explanations for its line asymmetries, including a very
gentle galactic wind, internal gas dynamics, low-velocity gas outside the disk,
or two superposed gas disks. We do not detect the hot molecular counterpart to
the outflow previously detected in CO(2-1) in IRAS 17208-0014, but we note that
our SINFONI data are not sensitive enough to detect this outflow if it has a
small hot-to-cold molecular gas mass ratio of < 9x10.Comment: Accepted for publication in A&A (11 pages, 10 figures
Mid-J CO Emission in Nearby Seyfert Galaxies
We study for the first time the complete sub-millimeter spectra (450 GHz to
1550 GHz) of a sample of nearby active galaxies observed with the SPIRE Fourier
Transform Spectrometer (SPIRE/FTS) onboard Herschel. The CO ladder (from Jup =
4 to 12) is the most prominent spectral feature in this range. These CO lines
probe warm molecular gas that can be heated by ultraviolet photons, shocks, or
X-rays originated in the active galactic nucleus or in young star-forming
regions. In these proceedings we investigate the physical origin of the CO
emission using the averaged CO spectral line energy distribution (SLED) of six
Seyfert galaxies. We use a radiative transfer model assuming an isothermal
homogeneous medium to estimate the molecular gas conditions. We also compare
this CO SLED with the predictions of photon and X-ray dominated region (PDR and
XDR) models.Comment: Proceedings of the Torus Workshop 2012 held at the University of
Texas at San Antonio, 5-7 December 2012. C. Packham, R. Mason, and A.
Alonso-Herrero (eds.); 6 pages, 3 figure
Avaliação do escurecimento de grãos de linhagens de feijoeiro-comum, no Estado de Mato Grosso.
O presente trabalho teve como objetivo avaliar linhagens de grão carioca com escurecimento lento de grãos no estado de Mato Grosso.CONAF
Optical integral field spectroscopy of intermediate redshift infrared bright galaxies
The extreme infrared (IR) luminosity of local luminous and ultra-luminous IR
galaxies (U/LIRGs; 11 12,
respectively) is mainly powered by star-formation processes triggered by
mergers or interactions. While U/LIRGs are rare locally, at z > 1, they become
more common, they dominate the star-formation rate (SFR) density, and a
fraction of them are found to be normal disk galaxies. Therefore, there must be
an evolution of the mechanism triggering these intense starbursts with
redshift. To investigate this evolution, we present new optical SWIFT integral
field spectroscopic H{\alpha}+[NII] observations of a sample of 9
intermediate-z (0.2 < z < 0.4) U/LIRG systems selected from Herschel 250{\mu}m
observations. The main results are the following: (a) the ratios between the
velocity dispersion and the rotation curve amplitude indicate that 10-25% (1-2
out of 8) might be compatible with being isolated disks while the remaining
objects are interacting/merging systems; (b) the ratio between un-obscured and
obscured SFR traced by H{\alpha} and LIR, respectively, is similar in both
local and these intermediate-z U/LIRGs; and (c) the ratio between 250{\mu}m and
the total IR luminosities of these intermediate-z U/LIRGs is higher than that
of local U/LIRGs with the same LIR . This indicates a reduced dust temperature
in these intermediate-z U/LIRGs. This, together with their already measured
enhanced molecular gas content, suggests that the interstellar medium
conditions are different in our sample of intermediate-z galaxies when compared
to local U/LIRGs.Comment: Accepted for publication in MNRA
High-resolution imaging of the molecular outflows in two mergers: IRAS17208-0014 and NGC1614
Galaxy evolution scenarios predict that the feedback of star formation and
nuclear activity (AGN) can drive the transformation of gas-rich spiral mergers
into ULIRGs, and, eventually, lead to the build-up of QSO/elliptical hosts. We
study the role that star formation and AGN feedback have in launching and
maintaining the molecular outflows in two starburst-dominated advanced mergers,
NGC1614 and IRAS17208-0014, by analyzing the distribution and kinematics of
their molecular gas reservoirs. We have used the PdBI array to image with high
spatial resolution (0.5"-1.2") the CO(1-0) and CO(2-1) line emissions in
NGC1614 and IRAS17208-0014, respectively. The velocity fields of the gas are
analyzed and modeled to find the evidence of molecular outflows in these
sources and characterize the mass, momentum and energy of these components.
While most (>95%) of the CO emission stems from spatially-resolved
(~2-3kpc-diameter) rotating disks, we also detect in both mergers the emission
from high-velocity line wings that extend up to +-500-700km/s, well beyond the
estimated virial range associated with rotation and turbulence. The kinematic
major axis of the line wing emission is tilted by ~90deg in NGC1614 and by
~180deg in IRAS17208-0014 relative to their respective rotating disk major
axes. These results can be explained by the existence of non-coplanar molecular
outflows in both systems. In stark contrast with NGC1614, where star formation
alone can drive its molecular outflow, the mass, energy and momentum budget
requirements of the molecular outflow in IRAS17208-0014 can be best accounted
for by the existence of a so far undetected (hidden) AGN of L_AGN~7x10^11
L_sun. The geometry of the molecular outflow in IRAS17208-0014 suggests that
the outflow is launched by a non-coplanar disk that may be associated with a
buried AGN in the western nucleus.Comment: Final version in press, accepted by A&A. Reference list updated.
Minor typos correcte
- …