1,161 research outputs found
Testing statistical Isotropy in Cosmic Microwave Background Polarization maps
We apply our symmetry based Power tensor technique to test conformity of
PLANCK Polarization maps with statistical isotropy. On a wide range of angular
scales (l=40-150), our preliminary analysis detects many statistically
anisotropic multipoles in foreground cleaned full sky PLANCK polarization maps
viz., COMMANDER and NILC. We also study the effect of residual foregrounds that
may still be present in the galactic plane using both common UPB77 polarization
mask, as well as the individual component separation method specific
polarization masks. However some of the statistically anisotropic modes still
persist, albeit significantly in NILC map. We further probed the data for any
coherent alignments across multipoles in several bins from the chosen multipole
range.Comment: 11 pages, 6 figures, Accepted for publication in MNRA
The molecular complex associated with the Galactic HII region Sh2-90: a possible site of triggered star formation
We investigate the star formation activity in the molecular complex
associated with the Galactic HII region Sh2-90, using radio-continuum maps
obtained at 1280 MHz and 610 MHz, Herschel Hi-GAL observations at 70 -- 500
microns, and deep near-infrared observation at JHK bands, along with Spitzer
observations. Sh2-90 presents a bubble morphology in the mid-IR (size ~ 0.9 pc
x 1.6 pc). Radio observations suggest it is an evolved HII region with an
electron density ~ 144 cm^-3, emission measure ~ 6.7 x 10^4 cm^-6 pc and a
ionized mass ~ 55 Msun. From Hi-GAL observations it is found that the HII
region is part of an elongated extended molecular cloud (size ~ 5.6 pc x 9.7
pc, H_2 column density >= 3 x 10^21 cm^-2 and dust temperature 18 -- 27 K) of
total mass >= 1 x 10^4 Msun. We identify the ionizing cluster of Sh2-90, the
main exciting star being an O8--O9 V star. Five cold dust clumps (mass ~ 8 --
95 Msun), four mid-IR blobs around B stars, and a compact HII region are found
at the edge of the bubble.The velocity information derived from CO (J=3-2) data
cubes suggests that most of them are associated with the Sh2-90 region. 129
YSOs are identified (Class I, Class II, and near-IR excess sources). The
majority of the YSOs are low mass (<= 3 Msun) sources and they are distributed
mostly in the regions of high column density. Four candidate Class 0/I MYSOs
have been found; they will possibly evolve to stars of mass >= 15 Msun. We
suggest multi-generation star formation is present in the complex. From the
evidences of interaction, the time scales involved and the evolutionary status
of stellar/protostellar sources, we argue that the star formation at the
immediate border/edges of Sh2-90 might have been triggered by the expanding HII
region. However, several young sources in this complex are probably formed by
some other processes.Comment: 22 pages, 22 figures, accepted for publication in Astronomy and
Astrophysic
A geometric method for model reduction of biochemical networks with polynomial rate functions
Relative Stability of Network States in Boolean Network Models of Gene Regulation in Development
Progress in cell type reprogramming has revived the interest in Waddington's
concept of the epigenetic landscape. Recently researchers developed the
quasi-potential theory to represent the Waddington's landscape. The
Quasi-potential U(x), derived from interactions in the gene regulatory network
(GRN) of a cell, quantifies the relative stability of network states, which
determine the effort required for state transitions in a multi-stable dynamical
system. However, quasi-potential landscapes, originally developed for
continuous systems, are not suitable for discrete-valued networks which are
important tools to study complex systems. In this paper, we provide a framework
to quantify the landscape for discrete Boolean networks (BNs). We apply our
framework to study pancreas cell differentiation where an ensemble of BN models
is considered based on the structure of a minimal GRN for pancreas development.
We impose biologically motivated structural constraints (corresponding to
specific type of Boolean functions) and dynamical constraints (corresponding to
stable attractor states) to limit the space of BN models for pancreas
development. In addition, we enforce a novel functional constraint
corresponding to the relative ordering of attractor states in BN models to
restrict the space of BN models to the biological relevant class. We find that
BNs with canalyzing/sign-compatible Boolean functions best capture the dynamics
of pancreas cell differentiation. This framework can also determine the genes'
influence on cell state transitions, and thus can facilitate the rational
design of cell reprogramming protocols.Comment: 24 pages, 6 figures, 1 tabl
Star Formation and Young Population of the HII Complex Sh2-294
The Sh2-294 HII region ionized by a single B0V star features several infrared
excess sources, a photodissociation region, and also a group of reddened stars
at its border. The star formation scenario in the region seems to be quite
complex. In this paper, we present follow-up results of Sh2-294 HII region at
3.6, 4.5, 5.8, and 8.0 microns observed with the Spitzer Space Telescope
Infrared Array Camera (IRAC), coupled with H2 (2.12 microns) observation, to
characterize the young population of the region and to understand its star
formation history. We identified 36 young stellar object (YSO, Class I, Class
II and Class I/II) candidates using IRAC color-color diagrams. It is found that
Class I sources are preferentially located at the outskirts of the HII region
and associated with enhanced H2 emission; none of them are located near the
central cluster. Combining the optical to mid-infrared (MIR) photometry of the
YSO candidates and using the spectral energy distribution fitting models, we
constrained stellar parameters and the evolutionary status of 33 YSO
candidates. Most of them are interpreted by the model as low-mass (< 4 solar
masses) YSOs; however, we also detected a massive YSO (~9 solar masses) of
Class I nature, embedded in a cloud of visual extinction of ~24 mag. Present
analysis suggests that the Class I sources are indeed younger population of the
region relative to Class II sources (age ~ 4.5 x 10^6 yr). We suggest that the
majority of the Class I sources, including the massive YSOs, are
second-generation stars of the region whose formation is possibly induced by
the expansion of the HII region powered by a ~ 4 x 10^6 yr B0 main-sequence
star.Comment: 12 pages, 7 figures, 2 tables. Accepted for publication in The
Astrophysical Journa
- …
