124 research outputs found

    Production of medium-chain volatile flavour esters in Pichia pastoris whole-cell biocatalysts with extracellular expression of Saccharomyces cerevisiae acyl-CoA:ethanol O-acyltransferase Eht1 or Eeb1

    Get PDF
    Medium-chain volatile flavour esters are important molecules since they have extensive applications in food, fragrance, cosmetic, paint and coating industries, which determine different characteristics of aroma or taste in commercial products. Biosynthesis of these compounds by alcoholysis is catalyzed by acyl-CoA:ethanol O-acyltransferases Eht1 or Eeb1 in Saccharomyces cerevisiae. In this study, these two yeast enzymes were selected to explore their preparations as the form of whole cell biocatalysts for the production of volatile flavour esters. Here, the novel whole cell biocatalysts Pichia pastoris yeasts with functional extracellular expression of Eht1 or Eeb1 were constructed. Flavour production was established through an integrated process with coupled enzyme formation and ester biosynthesis in the recombinant yeasts in one pot, leading to the formation of volatile C6–C14 methyl and ethyl esters from wort medium. Interestingly, there is no significant difference between P. pastoris-EHT1 and P. pastoris-EEB1 in substrate preference during flavour biosynthesis, indicating a similar role of Eht1 and Eeb1 in P. pastoris cells, in contradiction with previous findings in S. cerevisiae to some extent. Consequently the study not only provides a greater understanding of these two enzymes in a heterogeneous host, but also demonstrated the positive effect of the recombinant Eht1 and Eeb1 in ester formation by P. pastoris live cells, potentially paving the way towards achieving efficient production of volatile flavour by an integrated biocatalytic system composed of recombinant enzyme production and flavour biosynthesis

    The context of chemical communication driving a mutualism

    Get PDF
    Recent work suggests that Drosophila and Saccharomyces yeasts may establish a mutualistic association, and that this is driven by chemical communication. While individual volatiles have been implicated in the attraction of D. melanogaster, the semiochemicals affecting the behavior of the sibling species D. simulans are less well characterised. Here, we comprehensively scrutinize a broad range of volatiles produced by attractive and repulsive yeasts to experimentally evaluate the chemical nature of communication between these species. When grown in liquid or on agar-solidified grape juice, attraction to S. cerevisiae was primarily driven by 3-methylbutyl acetate (isoamyl acetate) and repulsion by acetic acid, a known attractant to D. melanogaster (also known as vinegar fly). Using T-maze choice tests and synthetic compounds we show that these responses were strongly influenced by compound concentration. Moreover, the behavioral response is further impacted by the chemical context of the environment. Thus, chemical communication between yeasts and flies is complex, and is not simply driven by the presence of single volatiles, but modulated by compound interactions. The ecological context of chemical communication needs to be taken into consideration when testing for ecologically realistic responses

    The development of a 16S rRNA gene based PCR for the identification of Streptococcus pneumoniae and comparison with four other species specific PCR assays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Streptococcus pneumoniae </it>is one of the most frequently encountered pathogens in humans but its differentiation from closely related but less pathogenic streptococci remains a challenge.</p> <p>Methods</p> <p>This report describes a newly-developed PCR assay (Spne-PCR), amplifying a 217 bp product of the 16S rRNA gene of <it>S. pneumoniae</it>, and its performance compared to other genotypic and phenotypic tests.</p> <p>Results</p> <p>The new PCR assay designed in this study, proved to be specific at 57°C for <it>S. pneumoniae</it>, not amplifying <it>S. pseudopneumoniae </it>or any other streptococcal strain or any strains from other upper airway pathogenic species. PCR assays (psaA, LytA, ply, spn9802-PCR) were previously described for the specific amplification of <it>S. pneumoniae</it>, but <it>psaA</it>-PCR was the only one found not to cross-react with <it>S. pseudopneumoniae</it>.</p> <p>Conclusion</p> <p>Spne-PCR, developed for this study, and psaA-PCR were the only two assays which did not mis-identify <it>S. pseudopneumoniae </it>as <it>S. pneumoniae</it>. Four other PCR assays and the AccuProbe assay were unable to distinguish between these species.</p

    Engineered Single-Domain Antibodies with High Protease Resistance and Thermal Stability

    Get PDF
    The extreme pH and protease-rich environment of the upper gastrointestinal tract is a major obstacle facing orally-administered protein therapeutics, including antibodies. Through protein engineering, several Clostridium difficile toxin A-specific heavy chain antibody variable domains (VHHs) were expressed with an additional disulfide bond by introducing Ala/Gly54Cys and Ile78Cys mutations. Mutant antibodies were compared to their wild-type counterparts with respect to expression yield, non-aggregation status, affinity for toxin A, circular dichroism (CD) structural signatures, thermal stability, protease resistance, and toxin A-neutralizing capacity. The mutant VHHs were found to be well expressed, although with lower yields compared to wild-type counterparts, were non-aggregating monomers, retained low nM affinity for toxin A, albeit the majority showed somewhat reduced affinity compared to wild-type counterparts, and were capable of in vitro toxin A neutralization in cell-based assays. Far-UV and near-UV CD spectroscopy consistently showed shifts in peak intensity and selective peak minima for wild-type and mutant VHH pairs; however, the overall CD profile remained very similar. A significant increase in the thermal unfolding midpoint temperature was observed for all mutants at both neutral and acidic pH. Digestion of the VHHs with the major gastrointestinal proteases, at biologically relevant concentrations, revealed a significant increase in pepsin resistance for all mutants and an increase in chymotrypsin resistance for the majority of mutants. Mutant VHH trypsin resistance was similar to that of wild-type VHHs, although the trypsin resistance of one VHH mutant was significantly reduced. Therefore, the introduction of a second disulfide bond in the hydrophobic core not only increases VHH thermal stability at neutral pH, as previously shown, but also represents a generic strategy to increase VHH stability at low pH and impart protease resistance, with only minor perturbations in target binding affinities. These are all desirable characteristics for the design of protein-based oral therapeutics

    Yeast : the soul of beer’s aroma—a review of flavour-active esters and higher alcohols produced by the brewing yeast

    Get PDF
    Among the most important factors influencing beer quality is the presence of well-adjusted amounts of higher alcohols and esters. Thus, a heavy body of literature focuses on these substances and on the parameters influencing their production by the brewing yeast. Additionally, the complex metabolic pathways involved in their synthesis require special attention. More than a century of data, mainly in genetic and proteomic fields, has built up enough information to describe in detail each step in the pathway for the synthesis of higher alcohols and their esters, but there is still place for more. Higher alcohols are formed either by anabolism or catabolism (Ehrlich pathway) of amino acids. Esters are formed by enzymatic condensation of organic acids and alcohols. The current paper reviews the up-to-date knowledge in the pathways involving the synthesis of higher alcohols and esters by brewing yeasts. Fermentation parameters affecting yeast response during biosynthesis of these aromatic substances are also fully reviewed.Eduardo Pires gratefully acknowledges the Fundacao para a Ciencia e a Tecnologia (FCT, Portugal) for the PhD fellowship support (SFRH/BD/61777/2009). The financial contributions of the EU FP7 project Ecoefficient Biodegradable Composite Advanced Packaging (EcoBioCAP, grant agreement no. 265669) as well as of the Grant Agency of the Czech Republic (project GACR P503/12/1424) are also gratefully acknowledged. The authors thank the Ministry of Education, Youth and Sports of the Czech Republic (MSM 6046137305) for their financial support

    Identification and genotyping of bacteria from paired vaginal and rectal samples from pregnant women indicates similarity between vaginal and rectal microflora

    Get PDF
    Background: The vaginal microflora is important for maintaining vaginal health and preventing infections of the reproductive tract. The rectum has been suggested as the major source for the colonisation of the vaginal econiche. Methods: To establish whether the rectum can serve as a possible bacterial reservoir for colonisation of the vaginal econiche, we cultured vaginal and rectal specimens from pregnant women at 35-37 weeks of gestation, identified the isolates to the species level with tRNA intergenic length polymorphism analysis (tDNA-PCR) and genotyped the isolates for those subjects from which the same species was isolated simultaneously vaginally and rectally, by RAPD-analysis. One vaginal and one rectal swab were collected from a total of each of 132 pregnant women at 35-37 weeks of gestation. Swabs were cultured on Columbia CNA agar and MRS agar. For each subject 4 colonies were selected for each of both sites, i.e. 8 colonies in total. Results: Among the 844 isolates that could be identified by tDNA-PCR, a total of 63 bacterial species were present, 9 (14%) only vaginally, 26 (41%) only rectally, and 28 (44%) in both vagina and rectum. A total of 121 (91.6%) of 132 vaginal samples and 51 (38.6%) of 132 rectal samples were positive for lactobacilli. L. crispatus was the most frequently isolated Lactobacillus species from the vagina (40% of the subjects were positive), followed by L. jensenii (32%), L. gasseri (30%) and L. iners (11%). L. gasseri was the most frequently isolated Lactobacillus species from the rectum (15%), followed by L. jensenii (12%), L. crispatus (11%) and L. iners (2%). A total of 47 pregnant women carried the same species vaginally and rectally. This resulted in 50 vaginal/rectal pairs of the same species, for a total of eight different species. For 34 of the 50 species pairs (68%), isolates with the same genotype were present vaginally and rectally and a high level of genotypic diversity within species per subject was also established. Conclusion: It can be concluded that there is a certain degree of correspondence between the vaginal and rectal microflora, not only with regard to species composition but also with regard to strain identity between vaginal and rectal isolates. These results support the hypothesis that the rectal microflora serves as a reservoir for colonisation of the vaginal econiche

    Genotyping of Streptococcus agalactiae (group B streptococci) isolated from vaginal and rectal swabs of women at 35-37 weeks of pregnancy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Group B streptococci (GBS), or <it>Streptococcus agalactiae</it>, are the leading bacterial cause of meningitis and bacterial sepsis in newborns. Here we compared different culture media for GBS detection and we compared the occurrence of different genotypes and serotypes of GBS isolates from the vagina and rectum.</p> <p>Methods</p> <p><it>Streptococcus agalactiae </it>was cultured separately from both rectum and vagina, for a total of 150 pregnant women, i) directly onto Columbia CNA agar, or indirectly onto ii) Granada agar resp. iii) Columbia CNA agar, after overnight incubation in Lim broth.</p> <p>Results</p> <p>Thirty six women (24%) were colonized by GBS. Of these, 19 harbored GBS in both rectum and vagina, 9 only in the vagina and 8 exclusively in the rectum. The combination of Lim broth and subculture on Granada agar was the only culture method that detected all GBS positive women. Using RAPD-analysis, a total of 66 genotypes could be established among the 118 isolates from 32 women for which fingerprinting was carried out. Up to 4 different genotypes in total (rectal + vaginal) were found for 4 women, one woman carried 3 different genotypes vaginally and 14 women carried two 2 different genotypes vaginally. Only two subjects were found to carry strains with the same genotype, although the serotype of both of these strains was different.</p> <p>Eighteen of the 19 subjects with GBS at both sites had at least one vaginal and one rectal isolate with the same genotype.</p> <p>We report the presence of two to four different genotypes in 22 (61%) of the 36 GBS positive women and the presence of identical genotypes in both sites for all women but one.</p> <p>Conclusion</p> <p>The combination of Lim broth and subculture on Granada medium provide high sensitivity for GBS detection from vaginal and rectal swabs from pregnant women. We established a higher genotypic diversity per individual than other studies, with up to four different genotypes among a maximum of 6 isolates per individual picked. Still, 18 of the 19 women with GBS from both rectum and vagina had at least one isolate from each sampling site with the same genotype.</p

    Single domain antibodies: promising experimental and therapeutic tools in infection and immunity

    Get PDF
    Antibodies are important tools for experimental research and medical applications. Most antibodies are composed of two heavy and two light chains. Both chains contribute to the antigen-binding site which is usually flat or concave. In addition to these conventional antibodies, llamas, other camelids, and sharks also produce antibodies composed only of heavy chains. The antigen-binding site of these unusual heavy chain antibodies (hcAbs) is formed only by a single domain, designated VHH in camelid hcAbs and VNAR in shark hcAbs. VHH and VNAR are easily produced as recombinant proteins, designated single domain antibodies (sdAbs) or nanobodies. The CDR3 region of these sdAbs possesses the extraordinary capacity to form long fingerlike extensions that can extend into cavities on antigens, e.g., the active site crevice of enzymes. Other advantageous features of nanobodies include their small size, high solubility, thermal stability, refolding capacity, and good tissue penetration in vivo. Here we review the results of several recent proof-of-principle studies that open the exciting perspective of using sdAbs for modulating immune functions and for targeting toxins and microbes

    Factors Influencing the Statistical Power of Complex Data Analysis Protocols for Molecular Signature Development from Microarray Data

    Get PDF
    Critical to the development of molecular signatures from microarray and other high-throughput data is testing the statistical significance of the produced signature in order to ensure its statistical reproducibility. While current best practices emphasize sufficiently powered univariate tests of differential expression, little is known about the factors that affect the statistical power of complex multivariate analysis protocols for high-dimensional molecular signature development.We show that choices of specific components of the analysis (i.e., error metric, classifier, error estimator and event balancing) have large and compounding effects on statistical power. The effects are demonstrated empirically by an analysis of 7 of the largest microarray cancer outcome prediction datasets and supplementary simulations, and by contrasting them to prior analyses of the same data.THE FINDINGS OF THE PRESENT STUDY HAVE TWO IMPORTANT PRACTICAL IMPLICATIONS: First, high-throughput studies by avoiding under-powered data analysis protocols, can achieve substantial economies in sample required to demonstrate statistical significance of predictive signal. Factors that affect power are identified and studied. Much less sample than previously thought may be sufficient for exploratory studies as long as these factors are taken into consideration when designing and executing the analysis. Second, previous highly-cited claims that microarray assays may not be able to predict disease outcomes better than chance are shown by our experiments to be due to under-powered data analysis combined with inappropriate statistical tests
    • …
    corecore