103 research outputs found

    Negative Feedback Regulation following Administration of Chronic Exogenous Corticosterone

    Full text link
    Administration of exogenous glucocorticoids is known to suppress the HPA axis and has been reported to occupy brain glucocorticoid receptors, eventually leading to down-regulation. To determine the effects of chronic corticosterone administration on HPA axis function, corticosterone was administered as both 25% and 50% corticosteronekholesterol pellets. Rats were sacrificed 6 days after corticosterone pellet implantation. The 25% corticosterone pellets produced a small increase in morning corticosterone concentrations but no change in evening ACTH or corticosterone secretion. The 50% corticosterone pellets produced constant corticosterone concentrations of 5–6 pg/dl, with no circadian variation in corticosterone, indicating inhibition of evening ACTH and corticosterone secretion. The 25% corticosterone pellets produced no significant decrease in thymus weight or in adrenal weight; 50% corticosterone pellets produced significant decreases in thymus weight and adrenal weight. Neither 25% nor 50% corticosterone pellets produced significant decreases in GR in hippocampus and cortex. The 50% corticosterone pellets treatment resulted in a decrease in anterior pituitary POMC mRNA levels, a decrease in baseline and oCRH stimulated ACTH release from the anterior pituitary, and a near complete inhibition of the AM and PM response to restraint stress. These results suggest that: 1) the HPA axis was able to adjust to the small increase in glucocorticoids produced by the 25% cort pellets with minimal disturbances in function and 2) 50% corticosterone pellets exert a significant inhibitory effect on stress and diurnal ACTH secretion which appears to be exerted at the pituitary as well as possible inhibitory effects on brain.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72571/1/j.1365-2826.1995.tb00665.x.pd

    Rhythmicity in Mice Selected for Extremes in Stress Reactivity: Behavioural, Endocrine and Sleep Changes Resembling Endophenotypes of Major Depression

    Get PDF
    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, including hyper- or hypo-activity of the stress hormone system, plays a critical role in the pathophysiology of mood disorders such as major depression (MD). Further biological hallmarks of MD are disturbances in circadian rhythms and sleep architecture. Applying a translational approach, an animal model has recently been developed, focusing on the deviation in sensitivity to stressful encounters. This so-called 'stress reactivity' (SR) mouse model consists of three separate breeding lines selected for either high (HR), intermediate (IR), or low (LR) corticosterone increase in response to stressors.In order to contribute to the validation of the SR mouse model, our study combined the analysis of behavioural and HPA axis rhythmicity with sleep-EEG recordings in the HR/IR/LR mouse lines. We found that hyper-responsiveness to stressors was associated with psychomotor alterations (increased locomotor activity and exploration towards the end of the resting period), resembling symptoms like restlessness, sleep continuity disturbances and early awakenings that are commonly observed in melancholic depression. Additionally, HR mice also showed neuroendocrine abnormalities similar to symptoms of MD patients such as reduced amplitude of the circadian glucocorticoid rhythm and elevated trough levels. The sleep-EEG analyses, furthermore, revealed changes in rapid eye movement (REM) and non-REM sleep as well as slow wave activity, indicative of reduced sleep efficacy and REM sleep disinhibition in HR mice.Thus, we could show that by selectively breeding mice for extremes in stress reactivity, clinically relevant endophenotypes of MD can be modelled. Given the importance of rhythmicity and sleep disturbances as biomarkers of MD, both animal and clinical studies on the interaction of behavioural, neuroendocrine and sleep parameters may reveal molecular pathways that ultimately lead to the discovery of new targets for antidepressant drugs tailored to match specific pathologies within MD

    Sleep disturbances in highly stress reactive mice: Modeling endophenotypes of major depression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuronal mechanisms underlying affective disorders such as major depression (MD) are still poorly understood. By selectively breeding mice for high (HR), intermediate (IR), or low (LR) reactivity of the hypothalamic-pituitary-adrenocortical (HPA) axis, we recently established a new genetic animal model of extremes in stress reactivity (SR). Studies characterizing this SR mouse model on the behavioral, endocrine, and neurobiological levels revealed several similarities with key endophenotypes observed in MD patients. HR mice were shown to have changes in rhythmicity and sleep measures such as rapid eye movement sleep (REMS) and non-REM sleep (NREMS) as well as in slow wave activity, indicative of reduced sleep efficacy and increased REMS. In the present study we were interested in how far a detailed spectral analysis of several electroencephalogram (EEG) parameters, including relevant frequency bands, could reveal further alterations of sleep architecture in this animal model. Eight adult males of each of the three breeding lines were equipped with epidural EEG and intramuscular electromyogram (EMG) electrodes. After recovery, EEG and EMG recordings were performed for two days.</p> <p>Results</p> <p>Differences in the amount of REMS and wakefulness and in the number of transitions between vigilance states were found in HR mice, when compared with IR and LR animals. Increased frequencies of transitions from NREMS to REMS and from REMS to wakefulness in HR animals were robust across the light-dark cycle. Detailed statistical analyses of spectral EEG parameters showed that especially during NREMS the power of the theta (6-9 Hz), alpha (10-15 Hz) and eta (16-22.75 Hz) bands was significantly different between the three breeding lines. Well defined distributions of significant power differences could be assigned to different times during the light and the dark phase. Especially during NREMS, group differences were robust and could be continuously monitored across the light-dark cycle.</p> <p>Conclusions</p> <p>The HR mice, i.e. those animals that have a genetic predisposition to hyper-activating their HPA axis in response to stressors, showed disturbed patterns in sleep architecture, similar to what is known from depressed patients. Significant alterations in several frequency bands of the EEG, which also seem to at least partly mimic clinical observations, suggest the SR mouse lines as a promising animal model for basic research of mechanisms underlying sleep impairments in MD.</p

    Sex Differences in Social Interaction Behavior Following Social Defeat Stress in the Monogamous California Mouse (Peromyscus californicus)

    Get PDF
    Stressful life experiences are known to be a precipitating factor for many mental disorders. The social defeat model induces behavioral responses in rodents (e.g. reduced social interaction) that are similar to behavioral patterns associated with mood disorders. The model has contributed to the discovery of novel mechanisms regulating behavioral responses to stress, but its utility has been largely limited to males. This is disadvantageous because most mood disorders have a higher incidence in women versus men. Male and female California mice (Peromyscus californicus) aggressively defend territories, which allowed us to observe the effects of social defeat in both sexes. In two experiments, mice were exposed to three social defeat or control episodes. Mice were then behaviorally phenotyped, and indirect markers of brain activity and corticosterone responses to a novel social stimulus were assessed. Sex differences in behavioral responses to social stress were long lasting (4 wks). Social defeat reduced social interaction responses in females but not males. In females, social defeat induced an increase in the number of phosphorylated CREB positive cells in the nucleus accumbens shell after exposure to a novel social stimulus. This effect of defeat was not observed in males. The effects of defeat in females were limited to social contexts, as there were no differences in exploratory behavior in the open field or light-dark box test. These data suggest that California mice could be a useful model for studying sex differences in behavioral responses to stress, particularly in neurobiological mechanisms that are involved with the regulation of social behavior

    In Search of HPA Axis Dysregulation in Child and Adolescent Depression

    Get PDF
    Dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis in adults with major depressive disorder is among the most consistent and robust biological findings in psychiatry. Given the importance of the adolescent transition to the development and recurrence of depressive phenomena over the lifespan, it is important to have an integrative perspective on research investigating the various components of HPA axis functioning among depressed young people. The present narrative review synthesizes evidence from the following five categories of studies conducted with children and adolescents: (1) those examining the HPA system’s response to the dexamethasone suppression test (DST); (2) those assessing basal HPA axis functioning; (3) those administering corticotropin-releasing hormone (CRH) challenge; (4) those incorporating psychological probes of the HPA axis; and (5) those examining HPA axis functioning in children of depressed mothers. Evidence is generally consistent with models of developmental psychopathology that hypothesize that atypical HPA axis functioning precedes the emergence of clinical levels of depression and that the HPA axis becomes increasingly dysregulated from child to adult manifestations of depression. Multidisciplinary approaches and longitudinal research designs that extend across development are needed to more clearly and usefully elucidate the role of the HPA axis in depression

    Characteristics of 698 patients with dissociative seizures: A UK multicenter study

    Get PDF
    Objective We aimed to characterize the demographics of adults with dissociative (nonepileptic) seizures, placing emphasis on distribution of age at onset, male:female ratio, levels of deprivation, and dissociative seizure semiology. Methods We collected demographic and clinical data from 698 adults with dissociative seizures recruited to the screening phase of the CODES (Cognitive Behavioural Therapy vs Standardised Medical Care for Adults With Dissociative Non‐Epileptic Seizures) trial from 27 neurology/specialist epilepsy clinics in the UK. We described the cohort in terms of age, age at onset of dissociative seizures, duration of seizure disorder, level of socioeconomic deprivation, and other social and clinical demographic characteristics and their associations. Results In what is, to date, the largest study of adults with dissociative seizures, the overall modal age at dissociative seizure onset was 19 years; median age at onset was 28 years. Although 74% of the sample was female, importantly the male:female ratio varied with age at onset, with 77% of female but only 59% of male participants developing dissociative seizures by the age of 40 years. The frequency of self‐reported previous epilepsy was 27%; nearly half of these epilepsy diagnoses were retrospectively considered erroneous by clinicians. Patients with predominantly hyperkinetic dissociative seizures had a shorter disorder duration prior to diagnosis in this study than patients with hypokinetic seizures (P < .001); dissociative seizure type was not associated with gender. Predominantly hyperkinetic seizures were most commonly seen in patients with symptom onset in their late teens. Thirty percent of the sample reported taking antiepileptic drugs; this was more common in men. More than 50% of the sample lived in areas characterized by the highest levels of deprivation, and more than two‐thirds were unemployed. Significance Females with dissociative seizures were more common at all ages, whereas the proportion of males increased with age at onset. This disorder was associated with socioeconomic deprivation. Those with hypokinetic dissociative seizures may be at risk for delayed diagnosis and treatment

    Characteristics of 698 patients with dissociative seizures: A UK multicenter study

    Get PDF
    Objective We aimed to characterize the demographics of adults with dissociative (nonepileptic) seizures, placing emphasis on distribution of age at onset, male:female ratio, levels of deprivation, and dissociative seizure semiology. Methods We collected demographic and clinical data from 698 adults with dissociative seizures recruited to the screening phase of the CODES (Cognitive Behavioural Therapy vs Standardised Medical Care for Adults With Dissociative Non‐Epileptic Seizures) trial from 27 neurology/specialist epilepsy clinics in the UK. We described the cohort in terms of age, age at onset of dissociative seizures, duration of seizure disorder, level of socioeconomic deprivation, and other social and clinical demographic characteristics and their associations. Results In what is, to date, the largest study of adults with dissociative seizures, the overall modal age at dissociative seizure onset was 19 years; median age at onset was 28 years. Although 74% of the sample was female, importantly the male:female ratio varied with age at onset, with 77% of female but only 59% of male participants developing dissociative seizures by the age of 40 years. The frequency of self‐reported previous epilepsy was 27%; nearly half of these epilepsy diagnoses were retrospectively considered erroneous by clinicians. Patients with predominantly hyperkinetic dissociative seizures had a shorter disorder duration prior to diagnosis in this study than patients with hypokinetic seizures (P < .001); dissociative seizure type was not associated with gender. Predominantly hyperkinetic seizures were most commonly seen in patients with symptom onset in their late teens. Thirty percent of the sample reported taking antiepileptic drugs; this was more common in men. More than 50% of the sample lived in areas characterized by the highest levels of deprivation, and more than two‐thirds were unemployed. Significance Females with dissociative seizures were more common at all ages, whereas the proportion of males increased with age at onset. This disorder was associated with socioeconomic deprivation. Those with hypokinetic dissociative seizures may be at risk for delayed diagnosis and treatment

    Cortisol and alpha-Amylase Secretion Patterns between and within Depressed and Non-Depressed Individuals

    Get PDF
    ObjectivesAssociations between biological stress markers and depression are inconsistent across studies. We assessed whether inter- and intra-individual variability explain these inconsistencies.MethodsPair-matched depressed and non-depressed participants (N = 30) collected saliva thrice a day for 30 days, resulting in 90 measurements per individual. The relationships between measures of stress-system function and depression were examined at the group level by means of mixed model analyses, and at the individual level by means of pair-matched comparisons. The analyses were repeated after adjusting for time-varying lifestyle factors by means of time-series regression analyses.ResultsCortisol and α-amylase levels were higher, the α-amylase/cortisol ratio larger, and the daily cortisol slope steeper in the depressed compared to the non-depressed group. Adjusting for lifestyle factors and antidepressant use reduced the associations under study. In 40%-60% of the matched comparisons, depressed individuals had higher cortisol and α-amylase levels, a larger α-amylase/cortisol ratio, and a steeper daily slope than their non-depressed match, regardless of adjustment.ConclusionsOur group-level findings were mostly in line with the literature but generalization to individuals appeared troublesome. Findings of studies on this topic should be interpreted with care, because in clinical practice the focus is on individuals instead of groups

    Sex differences in mood disorders: Perspectives from humans and rodent models

    Get PDF
    Mood disorders are devastating, often chronic illnesses characterized by low mood, poor affect, and anhedonia. Notably, mood disorders are approximately twice as prevalent in women compared to men. If sex differences in mood are due to underlying biological sex differences, a better understanding of the biology is warranted to develop better treatment or even prevention of these debilitating disorders. In this review, our goals are to: 1) summarize the literature related to mood disorders with respect to sex differences in prevalence, 2) introduce the corticolimbic brain network of mood regulation, 3) discuss strategies and challenges of modeling mood disorders in mice, 4) discuss mechanisms underlying sex differences and how these can be tested in mice, and 5) discuss how our group and others have used a translational approach to investigate mechanisms underlying sex differences in mood disorders in humans and mice
    corecore