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Abstract

Mood disorders are devastating, often chronic illnesses characterized by low mood, poor affect, and anhedonia.
Notably, mood disorders are approximately twice as prevalent in women compared to men. If sex differences in
mood are due to underlying biological sex differences, a better understanding of the biology is warranted to
develop better treatment or even prevention of these debilitating disorders. In this review, our goals are to:

1) summarize the literature related to mood disorders with respect to sex differences in prevalence, 2) introduce
the corticolimbic brain network of mood regulation, 3) discuss strategies and challenges of modeling mood
disorders in mice, 4) discuss mechanisms underlying sex differences and how these can be tested in mice, and
5) discuss how our group and others have used a translational approach to investigate mechanisms underlying

sex differences in mood disorders in humans and mice.
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Sex differenced in major depression

Major depressive disorder (MDD) is a severe mental
illness and the leading cause of disability and of years of
productivity lost worldwide [1]. In addition to the
psychological stress on patients and families, MDD con-
tributes to the development and progression of systemic
and organ diseases [2-5]. For instance, MDD increases
the risk for coronary heart disease incidence by approxi-
mately 1.7 times compared to non-depressed subjects
[6], and MDD patients have a 37% increased risk for
developing type 2 diabetes [7]. Moreover, patients with
mood disorders (MDD or bipolar disorder) make up
approximately 60% of completed suicides [8]. MDD is
defined as a syndrome that includes prominent emotion
dysregulation, low mood, poor affect, and/or anhedonia;
these core MDD symptoms are accompanied by cognitive
symptoms (attention, concentration), physiological symp-
toms (weight, locomotor, and sleep pattern changes) [9],
and frequent co-morbid high anxiety symptoms [9,10].
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Notably, women are twice as likely to be diagnosed
with MDD compared to men [11,12]. When men and
women that have been diagnosed with MDD are com-
pared, women tend to have more symptoms and higher
symptom severity, and women report more subjective dis-
tress [13-15]. Additionally, anxiety symptoms are almost
always co-morbid with MDD in women, making the two
difficult to separate. In fact, women are more likely than
men to have a co-morbid anxiety disorder with MDD
(e.g., [16]), and men more likely to have a co-morbid sub-
stance abuse disorder (reviewed in [17]), possibly suggest-
ing different coping strategies in males and females. A
frequent and important question is whether the sex differ-
ence in MDD incidence is an artifact of women being more
likely to seek treatment. However, this sex difference in
MDD incidence is consistently found across cultures and
in community-based epidemiological studies, in which the
factor of seeking treatment is removed (e.g., [13,18]), sug-
gesting that there are biological differences that place
women at increased risk for MDD. Also arguing against
the potential artifact of women being more likely to seek
treatment, Bogner and Gallo found no sex difference in
self-report of depressive symptoms in a community-based
epidemiological study [19].
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Some studies suggest that women respond differently
than men to antidepressant treatment. For instance, a
study by Kornstein et al. [11] found that women responded
more favorably (i.e, reduced symptoms, fewer adverse
effects) to selective serotonin reuptake inhibitors (SSRIs)
than men; conversely, men responded more favorably than
women to tricyclic antidepressants [11,20]. However, other
studies have reported no sex differences in response to
SSRIs or tricyclics (e.g., [21]), but a statistically superior
response to monoamine oxidase inhibitors (MAOQOIs) in
women compared to men [21]. Entsuah et al. [22] found
no sex difference in response to SSRIs or to venlafaxine, a
serotonin norepinephrine reuptake inhibitor. Taken to-
gether, this suggests variable or no sex differences in anti-
depressant response, specifically compared to the robust
and replicated findings of sex differences in symptom
dimensions.

It has been proposed that the increased prevalence of
MDD in women may be due to how women perceive
stress [23]. In other words, women may have the “trait”
of having more subjective distress in stressful situations
compared to men. Indeed, even when considering men
and women without an MDD diagnosis, there are sex dif-
ferences in response to stressful situations. For instance,
even when men and women have equivalent physiological
responses to the same stressful situation (no differences in
heart rate or plasma cortisol), women self-report higher
irritability and fear as well as decreased happiness com-
pared to men [23].

Depression-related sex differences in a corticolimbic
network of mood regulation

Even though the neurobiological mechanism(s) underlying
MDD remain poorly characterized, evidence from both
neuroimaging and postmortem neuroanatomical and
molecular studies suggest a dysfunction in the emotion
regulation centers of the brain underlying low affect, a
symptom dimension common to both MDD and anxiety
disorders [24-27]. This corticolimbic network includes the
prefrontal and anterior cingulate cortices, the hippocam-
pus, the anterior thalamic nuclei, and the amygdala
[24,28]. The subgenual anterior cingulate cortex (sgACC)
consistently shows elevated metabolic activity with the
induction of depressive states [29-31], which returns to
normal following antidepressant treatment [30] or deep
brain stimulation [32]. Interestingly, neuroimaging studies
show that features of sgACC dysfunction in MDD are
sexually dimorphic, with women exhibiting higher levels
of reactivity compared to males [33-35]. The amygdala
processes emotionally salient stimuli and, in concert with
cortical and subcortical interconnections, initiates a be-
havioral response [27]. Neuroimaging studies show that
MDD patients exhibit abnormal processing of emotional
stimuli, with sustained amygdala reactivity [36,37]
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(although [38,39]). Similarly, amygdala hyperactivity is
reported in patients with various anxiety disorders, includ-
ing post-traumatic stress, generalized anxiety, and social
anxiety disorders [40].

How do we model mood disorders in mice?

Validity of animal models

When assessing any animal model of a psychiatric disorder,
several criteria need to be considered. The animal model
should have construct validity, that is, it should follow a
similar etiology as the human disorder. The model should
have face validity, with anatomical, behavioral, or molecu-
lar features of the disorder being replicated. Predictive
validity should also be considered, as pharmacological
treatment in the animal model should recapitulate the ef-
fects of treatment in humans. Importantly, both the effect
and time-course of efficacious treatments in humans need
to be taken into account when assessing predictive validity
of an animal model.

Trait versus state

When researchers investigate anxiety-/depressive-like
behavior in mice, they often do so under baseline (i.e.,
“trait”) conditions. These traits represent properties of the
biological and behavioral system that may play a role in
susceptibility to develop a psychiatric disorder. On the
other hand, MDD represents a temporary mood “state”; in
other words, MDD can be considered a transient patho-
logical state that is brought on by certain factors, ie.,
depressive episodes. Studies under baseline conditions are
relevant, as they can provide insight into potential predis-
position for developing an MDD state. We argue,
however, that many studies only examine trait conditions.
We feel that this is especially true in mouse studies investi-
gating the origin of sex differences in anxiety-/depressive-
like behaviors. There are, however, models that researchers
can use to examine these anxiety-/depressive-like behaviors
under pathological state conditions that are homologous to
depressive episodes.

One model that is used to study mice in an elevated
mood-related state is unpredictable chronic mild stress
(UCMS). UCMS was originally developed in rats, and our
lab and others have recently used UCMS in mice to model
human MDD episodes. UCMS replicates the role of stress
in eliciting MDD, with rodents developing a depressive-
like syndrome after several weeks of random exposure to
mild social and environmental stressors. Specifically, these
mice have heightened fearfulness/anxiety-like behavior
[41], anhedonia-like behavior, as assessed by decreased
consumption of palatable food and drink [41,42] and
decreased sensitivity to rewards [43], and physiological
symptoms (decreased weight gain and grooming behavior
(e.g., [44]). Additionally, there is dysregulation of the
hypothalamic pituitary adrenal (HPA) axis and elevated
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basal plasma corticosterone [45], as reported in some
MDD patients (e.g., [46-49]). The UCMS syndrome
respects the time frame of onset and efficacy of anti-
depressant treatment [42,50,51]. Interestingly, not all mice
exhibit a depressive-like syndrome following UCMS ex-
posure, making it more realistic, as differences in response
to stress exposure are also observed in humans (e.g., [52]),
and making it a potential model to study both vulnerabil-
ity and resiliency to develop a depressive-like episode.
One significant drawback of UCMS is that it is not a
simple procedure to perform: it is labor intensive and lasts
for 4-9 weeks. Additionally, UCMS is not as highly repro-
ducible as some other mouse models of MDD (e.g., genetic
models), and this may be due to a number of factors,
including among others varying stress procedures, duration
of UCMS, strain of mice used, and normal heterogeneity in
stress response.

Another mouse model that elicits an elevated mood
state is chronic social defeat stress. With this paradigm,
male rodents are subjected to repeated bouts of social
subordination [53]. There are several benefits of this
paradigm: 1) it has construct validity (chronic stress
elicits the behavioral deficits), 2) it has predictive validity
(chronic antidepressant treatment reverses behavioral
deficits), 3) it affects multiple systems as MDD does (e.g.,
dopaminergic reward circuits and hippocampal neurotro-
phin), and 4) it is useful to study mechanisms underlying
resilience (e.g., [54]). However, there is a challenge with
the chronic social defeat paradigm when one is interested
in sex differences in MDD, since this paradigm seems to
only be effective in male, but not female C57BL/6 mice.
Researchers have got around this limitation by using dif-
ferent species of mice or by using rats (e.g., [55-57]). The
social defeat paradigm has been used successfully in the
monogamous California mouse (Peromyscus californicus),
in which both males and females aggressively defend terri-
tories [58]. Interestingly, Trainor and colleagues [59]
reported no effect of adult hormone manipulation in the
paradigm, but an effect of corncob bedding (which has
estrogenic properties) during development, together sug-
gesting developmental hormonal programming.

Learned helplessness is another model used in the ro-
dent literature to induce a depressive-like state [60,61]. In
this model, the rodent is exposed to a noxious stimulus
(often a shock) that it either can or cannot escape. When
later tested under conditions in which escape is possible,
the rodent that previously was exposed to the inescapable
shock often does not learn to escape. Importantly, the
learned helplessness model has: 1) construct validity (un-
controllable stressful events precipitate the deficit), 2) pre-
dictive validity (improved response after antidepressant
treatment), and 3) face validity (equated with the helpless-
ness experienced by humans with MDD). A very interest-
ing aspect of the learned helplessness model is that it
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seems to be ineffective in eliciting a depressive-like state
in female rats [62] and in female C57BL/6 mice [63]. This
sex difference may be strain/species specific, as both male
and female 129SvEv mice develop learned helplessness
[63]. Notably, the sex difference in learned helplessness in
rats was not reversed after removal of adult hormones by
gonadectomy [62], suggesting either developmental hor-
monal or sex chromosome complement effects.

Modeling sex differences in mice

When a sex difference is observed, there are several steps
that can be taken to determine the cause(s) of the sex dif-
ference. There are several comprehensive reviews on this
topic (e.g. [64-66]); we summarize the general strategy
here. The first and easiest step is to test whether the sex
difference disappears after normalizing, or “clamping”,
circulating gonadal hormones between males and females.
This can be accomplished by simply gonadectomizing
(GDX) adult males and females. If the sex difference is no
longer present after GDX, we know that the sex difference
was caused by the differences in circulating hormones
between males and females. Sex differences that disappear
when circulating hormones are made equivalent between
males and females are said to be due to “activational”
effects of gonadal hormones.

If the observed sex difference persists even when males
and females have the same circulating hormone exposure,
the next logical step is to test whether the sex difference is
influenced by developmental hormone exposure (ie.,
“organizational” effects of hormones). Here, exposure to
gonadal hormones during critical developmental periods
causes permanent effects on the body, and these sex differ-
ences persist when adult hormones are made equivalent.
The concept of the critical developmental window is actu-
ally quite tricky, as this window is not necessarily the same
for every trait examined, and the window can extend from
the prenatal into the postnatal period. Additionally, with
respect to reproductive behavior, testosterone exposure
during development performs both a masculinizing (organi-
zation of the neural control mechanisms for adult male sex
behavior) and a defeminizing function (loss of ability to
respond to the activational effects of ovarian hormones to
induce female sex behavior); notably, testosterone may per-
form these organizational effects during different critical
windows (see reviews [67,68]). Testing for organizational
effects of hormones can be accomplished in a few different
ways. One commonly used method is to treat females with
a dose of testosterone similar to what males are normally
exposed to during a critical developmental period; this crit-
ical period is typically thought to be right around the time
of birth in rodents (but prenatally in some species; reviewed
in [69]). If the females treated developmentally with testos-
terone are not significantly different from normal males,
then the sex difference was due to organizational effects of
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hormones. Another method for testing for organizational
effects of hormones is to remove the developmental testos-
terone exposure in males by GDX during the critical devel-
opmental period and determining whether these males are
significantly different from normal females. However, this
developmental GDX method is technically more challen-
ging, as the procedure would have to take place prenatally,
and it is difficult to know whether hormones were com-
pletely removed during the critical developmental window.
There are several important questions to consider with
studies aimed at manipulating hormone exposure during
critical developmental windows: 1) Does incomplete mas-
culinization or defeminization mean that the sex differ-
ence examined is not programmed by developmental
hormone exposure or was the critical developmental
window partially missed?, and 2) Is a single dose of testos-
terone enough for complete masculinization/defeminiza-
tion or is prolonged exposure necessary? Notably, recent
studies have identified puberty as an additional critical
period for organizational effects of gonadal hormones
(reviewed in [70]).

If the observed sex difference persists even after ma-
nipulating developmental hormone exposure, the next
step is to test for potential effects of the sex chromosome
complement. Genetic males have only one X chromosome
and one Y chromosome, while genetic females have two X
chromosomes. Thus, genes on the Y chromosome or gene
dosage of the X chromosome could play a role in sexual
dimorphism (reviewed in [71]). Even though researchers
knew as early as the 1950s that the presence of the Y
chromosome caused the undifferentiated gonads to
develop into testes [72], work in the 1990s zeroed in on
the SRY gene (Sry in mice) as being the testis-determining
gene [73,74]. The testes in turn produce androgens to
drive differentiation of the male internal and external
genitalia. In the absence of the Y chromosome, and there-
fore lack of SRY/Sry gene product, the undifferentiated
gonads develop into ovaries [72]. Since the testis-deter-
mining gene (Sry) is found on the Y chromosome, it is im-
possible to separate the potential role of sex chromosome
complement from gonadal (and therefore, hormonal sex)
in traditional wild-type mice, regardless of hormone ma-
nipulation. Thus, genetic manipulation has been used to
engineer the four core genotypes (FCG) mice, in which
Sry has been placed on an autosome after spontaneous de-
letion from the Y chromosome. Thus, genetic and gonadal
sex are dissociated in the FCG mice, and the contribution
of sex chromosome complement can be investigated inde-
pendently (reviewed in [75]). Using the FCG mice, investi-
gators can independently assess the contribution of sex
chromosome complement, developmental hormone ex-
posure, and adult circulating hormones to various ob-
served sex differences. Importantly, to be able to probe for
potential developmental hormone effects, all mice must
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be GDX several weeks prior to examination, such that any
differences observed due to gonads are considered to be
permanent changes due to hormone exposure during a
critical period of development. A key strength of the FCG
model is its ability to identify potential organizational
hormone effects during the perinatal life and during
puberty. Another mouse model that is useful for studying
the contribution of sex chromosome complement to sex
differences is the steroidogenic factor 1 (SF-1) KO mouse.
SE-1 (encoded by the Nr5al gene) is a transcription factor
involved in the reproductive system and is normally
expressed in the gonads, adrenal cortex, pituitary gland,
and ventromedial nucleus of the hypothalamus [76,77].
SF-1 KO mice lack gonads and therefore also lack
endogenous gonadal hormones during development and
in adulthood; thus, SF-1 KO mice are useful to examine
the effects of sex chromosome without the potential
confounding effects of endogenous gonadal hormones
[78-82].

Once sex chromosome complement has been identified
as a contributing factor to the sex difference of interest, it is
often important to determine whether the dosage of X
chromosomes or the presence of the Y chromosome under-
lies the sex difference. To this end, researchers use the Y*
mice, which have varying numbers of X and Y chromo-
somes, and Y chromosome consomic strains, in which the
strains are genetically identical except for the Y chromo-
some (reviewed in [83]).

Of mice and men: how do we investigate sex differences
in mood disorders?

Humans

Our lab and others have reported numerous differences
in the postmortem brains of MDD patients compared to
healthy controls. The goal of these studies is to identify
genes and proteins that are altered in the brains of
MDD patients in order to identify factors that may cause
MDD. Recent postmortem molecular studies [84-86]
support the hypothesis of a deficit in inhibitory neuro-
transmission in MDD. Specifically, reduced expression
of somatostatin (SST), a marker for inhibitory gamma-
aminobutyric acid (GABA) neurons targeting pyramidal
cell dendrites was observed in several brain regions in
the corticolimbic network of mood regulation [sgACC
[87], amygdala [86], and dorsolateral prefrontal cortex
(DLPFC) [88]]. In concert, these findings suggest a
GABA/SST-related cellular phenotype of reduced den-
dritic inhibition in depression. Using meta-analysis and
meta-regression in eight human postmortem microarray
studies in DLPFC, sgACC, and amygdala, we confirmed
that SST is significantly decreased in subjects with MDD
compared to matched controls and importantly, showed
that the SST reduction in female MDD is significantly
more robust than results in male MDD [89], together
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demonstrating a sexual dimorphism in reduced SST in
MDD.

Another method that we have used in the human post-
mortem brain is gene co-expression analysis. Co-expression
is defined as correlated gene expression across samples and
has been shown to reflect shared gene function, including
common regulation (e.g., hormones, transcription). The
goal of these studies is to assess the broader biological
context associated with our genes of interest. Using SST as
our “seed” gene of interest, we identified GABA receptor
signaling and mitochondrial dysfunction as the top canon-
ical pathways represented by genes co-expressed with SST.
Notably, this top 200 SST-co-regulated gene selection
included GABA synthesizing enzymes glutamate decarb-
oxylase 1 (GAD]; also known as GAD67) and GAD2 (also
known as GADG65), hence confirming the functional rele-
vance of an SST/GABA-related biological module [89].
Combined with our findings of a more robust reduction in
SST in women with MDD, these gene co-expression studies
suggest that more robust GABA-related deficits may
characterize female MDD.

A major roadblock that we encounter when using hu-
man postmortem brains is that we often do not have
blood samples from the same subjects, making circulating
gonadal hormone analysis impossible. To partially circum-
vent this limitation, we have combined gene expression
analysis and single nucleotide polymorphism (SNP) geno-
typing in the same subjects [ie., expression quantitative
trail loci (eQTL) study]. In these eQTL studies, we
searched for SNPs (i.e., genetic polymorphisms) that are
associated with either increased or decreased expression
of our genes of interest. For instance, we performed a tar-
geted eQTL study to test the hypothesis of X chromosome
genetic contribution to SST, GAD1, and GAD2 gene
expression. Even though the SST, GAD1, and GAD2 genes
are not located on the X chromosome, we found several X
chromosome SNPs associated with expression of these
three genes; these results suggest the possibility of trans-
regulation of SST, GAD1, and GAD2 by X chromosome-
encoded factors [89]. Together, these correlative findings
provide support for a contribution of genetic sex to sexual
dimorphism in affect dysregulation in human subjects,
potentially mediated by X chromosome trans-regulation
of key GABA-related genes.

Mice

Although studies in the human postmortem brain have
been highly informative in uncovering potential leads for
the molecular mechanism underlying female vulnerability
to MDD, complementary studies in mice are necessary to
test for mechanisms underlying observed human sex dif-
ferences. Importantly, we recently showed that the UCMS
paradigm recapitulates the female vulnerability to MDD.
Although both male and female UCMS-exposed mice
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developed elevated anxiety- and depressive-like behaviors
compared to non-stressed controls, the chronically
stressed females (which were freely cycling) exhibited a
more robust elevation in behavioral emotionality com-
pared to chronically stressed males [90], thus providing a
needed assay to investigate the sexual dimorphic bases
of human MDD. Here, “behavioral emotionality” or
“emotionality” is defined as combined and measurable
anxiety- and depressive-like behaviors in mice. Import-
antly, we did not find an interaction between UCMS
exposure and sex, suggesting similar underlying mecha-
nisms in males and females, but with additional factors
at play in one or both sexes.

In a related experiment, we aimed to determine the po-
tential contribution of developmental and adult hormone
exposure to our observed sex difference in response to
chronic stress exposure. To examine the potential devel-
opmental organizational role of hormones in establishing
adult sex differences in emotionality, we tested the impact
of neonatal testosterone exposure (a validated approach to
developmentally “masculinize” the brain) [91-94] on adult
emotionality in mice. We also examined potential activa-
tional hormone effects by comparing mice from each neo-
natal group that were GDX in adulthood and implanted
with estradiol capsules or given sham surgery and blank
implants. Results indicated that neonatal testosterone ex-
posure partially masculinized UCMS-induced high emo-
tionality of female mice; the females treated neonatally
with testosterone displayed emotionality measures inter-
mediate between normal males and females. Overall, we
did not observe consistent activational effects of estradiol,
although these studies were not designed to maximize
these contrasts. Notably, other studies have reported
effects of adult circulating hormones on emotionality (e.g.,
[95,96]). Indeed, Laplant and colleagues [97] reported that
GDX of females prevents the pro-depressive-like effects of
chronic stress. Our results in females treated neonatally
with testosterone suggested that another factor, potentially
sex chromosome complement, could influence the ob-
served sex difference in emotionality. Although female
mice in this study were treated neonatally with testoster-
one, mirroring the developmental testosterone exposure
experienced by males, they were still genetically female for
their entire lives; this suggests that genetic sex, regardless
of developmental or adult hormone exposure, represents
an additional factor contributing to adult emotionality. It
is important to note that these females treated neonatally
with testosterone did not have adult testosterone levels
equivalent to a normal male. Thus, a “cleaner” model (e.g.,
FCG mice) is necessary to disentangle the potential effects
of gonadal and genetic sex on emotionality.

Following up on the hint of a role for genetic sex, we
used the FCG mice in a next set of experiments as a tool
to separate the potential contributions of developmental
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hormone exposure, adult hormone exposure, and sex
chromosome complement to adult emotionality. FCG
mice were GDX as adults to remove endogenous gonadal
hormones and implanted with testosterone-filled or blank
capsules to also investigate the activational effects of tes-
tosterone. We then assessed anxiety-like behavior (using
elevated plus maze and open field) under baseline (no
stress) conditions and after exposure to UCMS. Under
baseline conditions, the sex-related factor influencing
emotionality was sex chromosome complement; however,
the effect was in the opposite direction to what we had
predicted based on the female vulnerability to mood
disorders. Specifically, XY mice, regardless of gonadal sex
or adult circulating testosterone treatment, exhibited
increased anxiety-like behavior relative to XX mice. This
sex chromosome effect was amplified after UCMS expos-
ure. Additionally, we saw a potent effect of circulating
testosterone to decrease anxiety-like behavior in UCMS-
exposed mice, consistent with prior evidence in the
literature [98]. Developmental hormone exposure had
inconsistent effects on anxiety-like behaviors under both
no stress and UCMS conditions. Although we reported a
sex chromosome effect for the first time for anxiety-like
behavior, a conventional interpretation in the sex differ-
ence field is that XY sex chromosome complement may
exert a compensatory effect to reduce differences other-
wise induced by circulating testosterone or vice versa [99];
indeed, FCG studies have reported similar opposing
actions of XY and circulating testosterone [100,101]. Since
“intact” male mice exhibit lower emotionality than females
[90] and since we observed a more robust effect of circu-
lating testosterone on lowering anxiety-like behaviors
compared to the anxiogenic effect of XY genetic sex,
circulating testosterone seems to “win out” in a normal
male; the end result being lower anxiety-like behavior in
males [89]. The robust behavioral findings and opposing
effects of XY genetic sex and circulating testosterone dem-
onstrate that both factors critically contribute to a dy-
namic equilibrium regulating adult anxiety-like behaviors.

To begin to search for the molecular underpinnings of
the opposing effects of male sex chromosome complement
and circulating testosterone on anxiety-like behavior, we
examined expression of several mood-related genes in the
frontal cortex of FCG mice. Specifically, we began by
examining expression of several genes related to GABA,
serotonin, and dopamine signaling, as candidate systems
implicated in mood disorders. Several studies suggest
impaired excitation/inhibition balance in mood disorders,
potentially mediated by decreased GABA inhibition [84,86-
88,102-106]. Additionally, results also suggest problems
with slow-acting serotonin and dopamine neuromodulatory
systems in mood disorders [107-115]. Interestingly, results
showed that the sex-related factor that had the strongest
effect on expression of these mood-related genes was sex
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chromosome complement. Overall, mice with XY sex
chromosome complement tended to have lower expression
of these GABA-, serotonin-, and dopamine-related genes
compared to XX mice. These gene expression findings
correlated nicely with our finding that XY mice also had
elevated anxiety-like behavior. Developmental hormone
exposure resulted in varied effects: mice with male hor-
mone exposure during development had higher expression
of GABA-related genes but lower expression of serotonin-
and dopamine-related genes. Adult testosterone exposure
exhibited inconsistent effects [116]. Together, these studies
provided some molecular support to the behavioral studies
investigating the contribution of XY sex chromosome com-
plement to adult behavioral emotionality.

Conclusions

There is clear evidence that women are more vulnerable to
develop mood disorders compared to men. This sex differ-
ence seems to have a biological basis, as we have found sex
differences in expression of mood-related genes in the
brains of depressed subjects. Our work thus far suggests
that a dynamic equilibrium exists between the effects of
male sex chromosome complement to increase anxiety,
which is opposed by the antianxiety effects of male

Male sex
chromosome Testosterone
complement
Geiles v,

SST Cells

Local circuit”

v

Neural networks

Figure 1 A novel model depicting a dynamic balance between
sex chromosome complement and circulating testosterone on
anxiety (black dotted line). A conventional interpretation in the sex
difference field is that XY sex chromosome complement may exert a
compensatory effect to reduce differences otherwise induced by
circulating testosterone or vice versa. Data outlined in this review
suggests that this is also the case for the regulation of mood and
anxiety-like behaviors. Specifically, while male sex chromosome
complement causes an increase in anxiety-like behavior, this effect is
opposed by testosterone’s antianxiety effect. While sex chromosome
complement appears to be acting via control of gene expression,
we hypothesize that testosterone affects the activity of certain
inhibitory GABA cell types (e.g., SST cells).
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circulating testosterone exposure. Figure 1 provides a sche-
matic summarizing our interpretation of the findings de-
scribed in the previous sections. Specifically, our work in
humans and in mice shows that sex chromosome comple-
ment influences expression of SST and other GABA-
related genes [89,116]. Our mouse studies also show that
while testosterone has a potent effect of decreasing
anxiety-like behavior, it does not seem to be doing so via
effects on GABA-, serotonin-, or dopamine-related gene
expression [89,116]. We hypothesize that testosterone acts
to oppose the pro-anxiety effects of male sex chromosome
complement by affecting the function of SST cells and/or
the function of the local cortical microcircuitry (Figure 1).
Finally, we believe that preliminary studies using appropriate
mouse models, with consideration of trait and state, as well
as the multiple dimensions of mood-related behaviors, can
provide a framework to systematically dissect the biological
underpinnings of sex differences in mood in humans.
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