46 research outputs found

    Magnetism, FeS colloids, and Origins of Life

    Full text link
    A number of features of living systems: reversible interactions and weak bonds underlying motor-dynamics; gel-sol transitions; cellular connected fractal organization; asymmetry in interactions and organization; quantum coherent phenomena; to name some, can have a natural accounting via physicalphysical interactions, which we therefore seek to incorporate by expanding the horizons of `chemistry-only' approaches to the origins of life. It is suggested that the magnetic 'face' of the minerals from the inorganic world, recognized to have played a pivotal role in initiating Life, may throw light on some of these issues. A magnetic environment in the form of rocks in the Hadean Ocean could have enabled the accretion and therefore an ordered confinement of super-paramagnetic colloids within a structured phase. A moderate H-field can help magnetic nano-particles to not only overcome thermal fluctuations but also harness them. Such controlled dynamics brings in the possibility of accessing quantum effects, which together with frustrations in magnetic ordering and hysteresis (a natural mechanism for a primitive memory) could throw light on the birth of biological information which, as Abel argues, requires a combination of order and complexity. This scenario gains strength from observations of scale-free framboidal forms of the greigite mineral, with a magnetic basis of assembly. And greigite's metabolic potential plays a key role in the mound scenario of Russell and coworkers-an expansion of which is suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed Krishnaswami Alladi, Springer 201

    Global maps of the magnetic thickness and magnetization of the Earth’s lithosphere

    Get PDF
    International audienceWe have constructed global maps of the large-scale magnetic thickness and magnetization of Earth's lithosphere. Deriving such large-scale maps based on lithospheric magnetic field measurements faces the challenge of the masking effect of the core field. In this study, the maps were obtained through analyses in the spectral domain by means of a new regional spatial power spectrum based on the Revised Spherical Cap Harmonic Analysis (R-SCHA) formalism. A series of regional spectral analyses were conducted covering the entire Earth. The R-SCHA surface power spectrum for each region was estimated using the NGDC-720 spherical harmonic (SH) model of the lithospheric magnetic field, which is based on satellite, aeromagnetic, and marine measurements. These observational regional spectra were fitted to a recently proposed statistical expression of the power spectrum of Earth's lithospheric magnetic field, whose free parameters include the thickness and magnetization of the magnetic sources. The resulting global magnetic thickness map is compared to other crustal and magnetic thickness maps based upon different geophysical data. We conclude that the large-scale magnetic thickness of the lithosphere is on average confined to a layer that does not exceed the Moho

    The Second Byurakan Survey Galaxies. I. The Optical Database

    Full text link
    A database for the entire catalog of the Second Byurakan Survey (SBS) galaxies is presented. It contains new measurements of their optical parameters and additional information taken from the literature and other databases. The measurements were made using Ipg(near-infrared), Fpg(red) and Jpg(blue) band images from photographic sky survey plates obtained by the Palomar Schmidt telescope and extracted from the STScI Digital Sky Survey (DSS). The database provides accurate coordinates, morphological type, spectral and activity classes, apparent magnitudes and diameters, axial ratios, and position angles, as well as number counts of neighboring objects in a circle of radius 50 kpc. The total number of individual SBS objects in the database is now 1676. The 188 Markarian galaxies which were re-discovered by SBS are not included in this database. We also include redshifts that are now available for 1576 SBS objects, as well as 2MASS infrared magnitudes for 1117 SBS galaxies.Comment: 13 pages, 1 figure, 1 tabl

    The effects of upper and lower limb exercise on the microvascular reactivity in limited cutaneous systemic sclerosis patients

    Get PDF
    Background: Aerobic exercise in general and high intensity interval training (HIIT) specifically is known to improve vascular function in a range of clinical conditions. HIIT in particular has demonstrated improvements in clinical outcomes, in conditions that have a strong macroangiopathic component. Nevertheless, the effect of HIIT on microcirculation in systemic sclerosis (SSc) patients is yet to be investigated. Therefore, the purpose of the study was to compare the effects of two HIIT protocols (cycle and arm cranking) on the microcirculation of the digital area in SSc patients. Methods: Thirty four limited cutaneous SSc patients (65.3 ± 11.6 years old) were randomly allocated in three groups (cycling, arm cranking and control group). The exercise groups underwent a twelve-week exercise program twice per week. All patients performed the baseline and post-exercise intervention measurements where physical fitness, functional ability, transcutaneous oxygen tension (ΔtcpO2), body composition and quality of life were assessed. Endothelial-dependent as well as-independent vasodilation were assessed in the middle and index fingers using LDF and incremental doses of acetylcholine (ACh) and sodium nitroprusside (SNP). Cutaneous flux data were expressed as cutaneous vascular conductance (CVC). Results: Peak oxygen uptake increased in both exercise groups (p<0.01, d=1.36). ΔtcpO2 demonstrated an increase in the arm cranking group only, with a large effect, but not found statistically significant,(p=0.59, d=0.93). Endothelial-dependent vasodilation improvement was greater in the arm cranking (p<0.05, d=1.07) in comparison to other groups. Both exercise groups improved life satisfaction (p<0.001) as well as reduced discomfort and pain due to Raynaud's phenomenon (p<0.05). Arm cranking seems to be the preferred mode of exercise for study participants as compared to cycling (p<0.05). No changes were observed in the body composition or the functional ability in both exercise groups. Conclusion: Our results suggest that arm cranking has the potential to improve the microvascular endothelial function in SSc patients. Also notably, our recommended training dose (e.g., a 12-week HIIT program, twice per week), appeared to be sufficient and tolerable for this population. Future research should focus on exploring the feasibility of a combined exercise such as aerobic and resistance training by assessing individual's experience and the quality of life in SSc patients. Trial registration: ClinicalTrials.gov (NCT number): NCT03058887, February 23, 2017, https://clinicaltrials.gov/ct2/show/NCT03058887?term=NCT03058887&rank=1 Key words: High intensity interval training, vascular function, quality of lif

    Atmospheric electrification in dusty, reactive gases in the solar system and beyond

    Get PDF
    Detailed observations of the solar system planets reveal a wide variety of local atmospheric conditions. Astronomical observations have revealed a variety of extrasolar planets none of which resembles any of the solar system planets in full. Instead, the most massive amongst the extrasolar planets, the gas giants, appear very similar to the class of (young) Brown Dwarfs which are amongst the oldest objects in the universe. Despite of this diversity, solar system planets, extrasolar planets and Brown Dwarfs have broadly similar global temperatures between 300K and 2500K. In consequence, clouds of different chemical species form in their atmospheres. While the details of these clouds differ, the fundamental physical processes are the same. Further to this, all these objects were observed to produce radio and X-ray emission. While both kinds of radiation are well studied on Earth and to a lesser extent on the solar system planets, the occurrence of emission that potentially originate from accelerated electrons on Brown Dwarfs, extrasolar planets and protoplanetary disks is not well understood yet. This paper offers an interdisciplinary view on electrification processes and their feedback on their hosting environment in meteorology, volcanology, planetology and research on extrasolar planets and planet formation
    corecore