63 research outputs found

    Morphology, ultrastructure and molecular characterisation of Spiroxys japonica Morishita, 1926 (Spirurida: Gnathostomatidae) from Pelophylax nigromaculatus (Hallowell) (Amphibia: Ranidae)

    Get PDF
    Gnathostomatid nematodes identified morphologically as Spiroxys japonica Morishita, 1926 were collected from the dark-spotted frog Pelophylax nigromaculatus (Hallowell) (Amphibia: Ranidae) in China. Light and scanning electron microscopy were used to study the morphology of this species in detail. Previously unreported morphological features are revealed and others corrected. In addition, adult nematodes of S. japonica collected from P. nigromaculatus and Spiroxys hanzaki Hasegawa, Miyata & Doi, 1998 collected from Andrias japonicus (Temminck) (Caudata: Cryptobranchidae) in China and Japan, respectively, and the third-stage larva of S. japonica collected from Lithobates catesbeianus (Shaw) (Anura: Ranidae) in Japan, were characterised using molecular methods by sequencing and analysing ribosomal [large ribosomal DNA (18S) and internal transcribed space] and mitochondrial [cytochrome c oxidase subunit 1] target regions, respectively. The new morphological and genetic data contributes to a more accurate diagnosis of this hitherto little known nematode genus

    Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The orders Ascaridida, Oxyurida, and Spirurida represent major components of zooparasitic nematode diversity, including many species of veterinary and medical importance. Phylum-wide nematode phylogenetic hypotheses have mainly been based on nuclear rDNA sequences, but more recently complete mitochondrial (mtDNA) gene sequences have provided another source of molecular information to evaluate relationships. Although there is much agreement between nuclear rDNA and mtDNA phylogenies, relationships among certain major clades are different. In this study we report that mtDNA sequences do not support the monophyly of Ascaridida, Oxyurida and Spirurida (clade III) in contrast to results for nuclear rDNA. Results from mtDNA genomes show promise as an additional independently evolving genome for developing phylogenetic hypotheses for nematodes, although substantially increased taxon sampling is needed for enhanced comparative value with nuclear rDNA. Ultimately, topological incongruence (and congruence) between nuclear rDNA and mtDNA phylogenetic hypotheses will need to be tested relative to additional independent loci that provide appropriate levels of resolution.</p> <p>Results</p> <p>For this comparative phylogenetic study, we determined the complete mitochondrial genome sequences of three nematode species, <it>Cucullanus robustus </it>(13,972 bp) representing Ascaridida, <it>Wellcomia </it><it>siamensis </it>(14,128 bp) representing Oxyurida, and <it>Heliconema longissimum </it>(13,610 bp) representing Spirurida. These new sequences were used along with 33 published nematode mitochondrial genomes to investigate phylogenetic relationships among chromadorean orders. Phylogenetic analyses of both nucleotide and amino acid sequence datasets support the hypothesis that Ascaridida is nested within Rhabditida. The position of Oxyurida within Chromadorea varies among analyses; in most analyses this order is sister to the Ascaridida plus Rhabditida clade, with representative Spirurida forming a distinct clade, however, in one case Oxyurida is sister to Spirurida. Ascaridida, Oxyurida, and Spirurida (the sampled clade III taxa) do not form a monophyletic group based on complete mitochondrial DNA sequences. Tree topology tests revealed that constraining clade III taxa to be monophyletic, given the mtDNA datasets analyzed, was a significantly worse result.</p> <p>Conclusion</p> <p>The phylogenetic hypotheses from comparative analysis of the complete mitochondrial genome data (analysis of nucleotide and amino acid datasets, and nucleotide data excluding 3<sup>rd </sup>positions) indicates that nematodes representing Ascaridida, Oxyurida and Spirurida do not share an exclusive most recent common ancestor, in contrast to published results based on nuclear ribosomal DNA. Overall, mtDNA genome data provides reliable support for nematode relationships that often corroborates findings based on nuclear rDNA. It is anticipated that additional taxonomic sampling will provide a wealth of information on mitochondrial genome evolution and sequence data for developing phylogenetic hypotheses for the phylum Nematoda.</p

    Molecular identification of Heterodera spp., an overview of fifteen years of research

    No full text
    During the last 15 years, researchers have collected and characterised more than 40 species of nematodes from the genus Heterodera. The species were identified by sequcncing the ITS-rRNA genes and by PCR-RFLP profiles; these tools remain the best available for identifying cyst-forming nematodes. By restricting the lTS amplicons with one or a combination of seven restrietion enzymes (AIuI, Aval, Bsh 12361, BsuRI, C/ol, MvaI, and Rsal), researchers ean distinguish most of the agrieulturally important eyst nematode species from one another and from their sibling species. Species from the Avenae group ean be differentiated from one another using the enzymes Alul, C/o I, Hinfl, !tal, Pstl, RsaI, Taql and 7hl9I. However, in some cases, it is not possible to use sequences of ITS-rRNA genes and PCR-RFLPs in diagnostic work. In these eases, morphometrie eharaeteristies are better for differentiating these species. Intraspeeifie polymorphism in the lTS sequences can make identification even more diffieult; here, more eonclusive moleeular identification tools are needed to diagnose some species. In the future, end-point PCR and semi-quantitative PCR (SYBR Green I) with species-specific primers (already developed for Heterodera glycines and H. schachtii) will be the likely choices for fast and reliable deteetion and quantifieation of eyst nematodes in samples
    corecore