2,936 research outputs found
Global distribution of two fungal pathogens threatening endangered sea turtles
This work was supported by grants of Ministerio de Ciencia e Innovación, Spain (CGL2009-10032, CGL2012-32934). J.M.S.R was supported by PhD fellowship of the CSIC (JAEPre 0901804). The Natural Environment Research Council and the Biotechnology and Biological Sciences Research Council supported P.V.W. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Thanks Machalilla National Park in Ecuador, Pacuare Nature Reserve in Costa Rica, Foundations Natura 2000 in Cape Verde and Equilibrio Azul in Ecuador, Dr. Jesus Muñoz, Dr. Ian Bell, Dr. Juan Patiño for help and technical support during samplingPeer reviewedPublisher PD
Solitonic supersymmetry restoration
Q-balls are a possible feature of any model with a conserved, global U(1)
symmetry and no massless, charged scalars. It is shown that for a broad class
of models of metastable supersymmetry breaking they are extremely influential
on the vacuum lifetime and make seemingly viable vacua catastrophically short
lived. A net charge asymmetry is not required as there is often a significant
range of parameter space where statistical fluctuations alone are sufficient.
This effect is examined for two supersymmetry breaking scenarios. It is found
that models of minimal gauge mediation (which necessarily have a messenger
number U(1)) undergo a rapid, supersymmetry restoring phase transition unless
the messenger mass is greater than 10^8 GeV. Similarly the ISS model, in the
context of direct mediation, quickly decays unless the perturbative
superpotential coupling is greater than the Standard Model gauge couplings.Comment: 17 pages, 3 figures, minor comments added, accepted for publication
in JHE
Condensate cosmology in O'Raifeartaigh models
Flat directions charged under an R-symmetry are a generic feature of
O'Raifeartaigh models. Non-topological solitons associated with this symmetry,
R-balls, are likely to form through the fragmentation of a condensate, itself
created by soft terms induced during inflation. In gravity mediated SUSY
breaking R-balls decay to gravitinos, reheating the universe. For gauge
mediation R-balls can provide a good dark matter candidate. Alternatively they
can decay, either reheating or cooling the universe. Conserved R-symmetry
permits decay to gravitinos or gauginos, whereas spontaneously broken
R-symmetry results in decay to visible sector gauge bosons.Comment: 29 pages, 5 figures. Comments and references added, accepted for
publication in JHE
Dynamical completions of generalized O'Raifeartaigh models
We present gauge theory completions of Wess-Zumino models admitting
supersymmetry breaking vacua with spontaneously broken R-symmetry. Our models
are simple deformations of generalized ITIY models, a supersymmetric theory
with gauge group Sp(N), N+1 flavors plus singlets, with a modified tree level
superpotential which explicitly breaks (part of) the global symmetry. Depending
on the nature of the deformation, we obtain effective O'Raifeartaigh-like
models whose pseudomoduli space is locally stable in a neighborhood of the
origin of field space, or in a region not including it. Hence, once embedded in
direct gauge mediation scenarios, our models can give low energy spectra with
either suppressed or unsuppressed gaugino mass.Comment: 21 pages, 1 figure; v3: reference adde
Quantitative principles of cis-translational control by general mRNA sequence features in eukaryotes.
BackgroundGeneral translational cis-elements are present in the mRNAs of all genes and affect the recruitment, assembly, and progress of preinitiation complexes and the ribosome under many physiological states. These elements include mRNA folding, upstream open reading frames, specific nucleotides flanking the initiating AUG codon, protein coding sequence length, and codon usage. The quantitative contributions of these sequence features and how and why they coordinate to control translation rates are not well understood.ResultsHere, we show that these sequence features specify 42-81% of the variance in translation rates in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana, Mus musculus, and Homo sapiens. We establish that control by RNA secondary structure is chiefly mediated by highly folded 25-60 nucleotide segments within mRNA 5' regions, that changes in tri-nucleotide frequencies between highly and poorly translated 5' regions are correlated between all species, and that control by distinct biochemical processes is extensively correlated as is regulation by a single process acting in different parts of the same mRNA.ConclusionsOur work shows that general features control a much larger fraction of the variance in translation rates than previously realized. We provide a more detailed and accurate understanding of the aspects of RNA structure that directs translation in diverse eukaryotes. In addition, we note that the strongly correlated regulation between and within cis-control features will cause more even densities of translational complexes along each mRNA and therefore more efficient use of the translation machinery by the cell
Massive stars as thermonuclear reactors and their explosions following core collapse
Nuclear reactions transform atomic nuclei inside stars. This is the process
of stellar nucleosynthesis. The basic concepts of determining nuclear reaction
rates inside stars are reviewed. How stars manage to burn their fuel so slowly
most of the time are also considered. Stellar thermonuclear reactions involving
protons in hydrostatic burning are discussed first. Then I discuss triple alpha
reactions in the helium burning stage. Carbon and oxygen survive in red giant
stars because of the nuclear structure of oxygen and neon. Further nuclear
burning of carbon, neon, oxygen and silicon in quiescent conditions are
discussed next. In the subsequent core-collapse phase, neutronization due to
electron capture from the top of the Fermi sea in a degenerate core takes
place. The expected signal of neutrinos from a nearby supernova is calculated.
The supernova often explodes inside a dense circumstellar medium, which is
established due to the progenitor star losing its outermost envelope in a
stellar wind or mass transfer in a binary system. The nature of the
circumstellar medium and the ejecta of the supernova and their dynamics are
revealed by observations in the optical, IR, radio, and X-ray bands, and I
discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry"
Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna
Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure
Tree Level Metastability and Gauge Mediation in Baryon Deformed SQCD
We investigate supersymmetric QCD with gauge group SU(2) and a baryon
deformation to the superpotential. The existence of an uplifted vacuum at the
origin with tree level metastability is demonstrated. When this model is
implemented in a direct gauge mediation scenario we therefore find gaugino
masses which are comparable to sfermion masses and parameterised by an
effective number of messengers 1/8. All deformations are well motivated by
appealing to the electric theory and an R-symmetry. This R-symmetry is
explicitly broken by the same term responsible for supersymmetry breaking.
Moreover, the model does not suffer from the Landau pole problem and we find
that it can be described in terms of just two scales: the weak scale and a high
scale like the Planck or GUT scale. The model can be tested by searching for
new particles at the TeV scale charged under the visible sector gauge group.Comment: 17 pages, 7 figures, updated reference
Recommended from our members
Clades of huge phages from across Earth's ecosystems.
Bacteriophages typically have small genomes1 and depend on their bacterial hosts for replication2. Here we sequenced DNA from diverse ecosystems and found hundreds of phage genomes with lengths of more than 200 kilobases (kb), including a genome of 735 kb, which is-to our knowledge-the largest phage genome to be described to date. Thirty-five genomes were manually curated to completion (circular and no gaps). Expanded genetic repertoires include diverse and previously undescribed CRISPR-Cas systems, transfer RNAs (tRNAs), tRNA synthetases, tRNA-modification enzymes, translation-initiation and elongation factors, and ribosomal proteins. The CRISPR-Cas systems of phages have the capacity to silence host transcription factors and translational genes, potentially as part of a larger interaction network that intercepts translation to redirect biosynthesis to phage-encoded functions. In addition, some phages may repurpose bacterial CRISPR-Cas systems to eliminate competing phages. We phylogenetically define the major clades of huge phages from human and other animal microbiomes, as well as from oceans, lakes, sediments, soils and the built environment. We conclude that the large gene inventories of huge phages reflect a conserved biological strategy, and that the phages are distributed across a broad bacterial host range and across Earth's ecosystems
Gravitational waves from single neutron stars: an advanced detector era survey
With the doors beginning to swing open on the new gravitational wave
astronomy, this review provides an up-to-date survey of the most important
physical mechanisms that could lead to emission of potentially detectable
gravitational radiation from isolated and accreting neutron stars. In
particular we discuss the gravitational wave-driven instability and
asteroseismology formalism of the f- and r-modes, the different ways that a
neutron star could form and sustain a non-axisymmetric quadrupolar "mountain"
deformation, the excitation of oscillations during magnetar flares and the
possible gravitational wave signature of pulsar glitches. We focus on progress
made in the recent years in each topic, make a fresh assessment of the
gravitational wave detectability of each mechanism and, finally, highlight key
problems and desiderata for future work.Comment: 39 pages, 12 figures, 2 tables. Chapter of the book "Physics and
Astrophysics of Neutron Stars", NewCompStar COST Action 1304. Minor
corrections to match published versio
Rapidity and Centrality Dependence of Proton and Anti-proton Production from Au+Au Collisions at sqrt(sNN) = 130GeV
We report on the rapidity and centrality dependence of proton and anti-proton
transverse mass distributions from Au+Au collisions at sqrt(sNN) = 130GeV as
measured by the STAR experiment at RHIC. Our results are from the rapidity and
transverse momentum range of |y|<0.5 and 0.35 <p_t<1.00GeV/c. For both protons
and anti-protons, transverse mass distributions become more convex from
peripheral to central collisions demonstrating characteristics of collective
expansion. The measured rapidity distributions and the mean transverse momenta
versus rapidity are flat within |y|<0.5. Comparisons of our data with results
from model calculations indicate that in order to obtain a consistent picture
of the proton(anti-proton) yields and transverse mass distributions the
possibility of pre-hadronic collective expansion may have to be taken into
account.Comment: 4 pages, 3 figures, 1 table, submitted to PR
- …
