3,081 research outputs found

    Investigating five key predictive text entry with combined distance and keystroke modelling

    Get PDF
    This paper investigates text entry on mobile devices using only five-keys. Primarily to support text entry on smaller devices than mobile phones, this method can also be used to maximise screen space on mobile phones. Reported combined Fitt's law and keystroke modelling predicts similar performance with bigram prediction using a five-key keypad as is currently achieved on standard mobile phones using unigram prediction. User studies reported here show similar user performance on five-key pads as found elsewhere for novice nine-key pad users

    The order of the quantum chromodynamics transition predicted by the standard model of particle physics

    Get PDF
    We determine the nature of the QCD transition using lattice calculations for physical quark masses. Susceptibilities are extrapolated to vanishing lattice spacing for three physical volumes, the smallest and largest of which differ by a factor of five. This ensures that a true transition should result in a dramatic increase of the susceptibilities.No such behaviour is observed: our finite-size scaling analysis shows that the finite-temperature QCD transition in the hot early Universe was not a real phase transition, but an analytic crossover (involving a rapid change, as opposed to a jump, as the temperature varied). As such, it will be difficult to find experimental evidence of this transition from astronomical observations.Comment: 7 pages, 4 figure

    Fluctuations of conserved charges at finite temperature from lattice QCD

    Get PDF
    We present the full results of the Wuppertal-Budapest lattice QCD collaboration on flavor diagonal and non-diagonal quark number susceptibilities with 2+1 staggered quark flavors, in a temperature range between 125 and 400 MeV. The light and strange quark masses are set to their physical values. Lattices with Nt=6, 8, 10, 12, 16 are used. We perform a continuum extrapolation of all observables under study. A Symanzik improved gauge and a stout-link improved staggered fermion action is utilized. All results are compared to the Hadron Resonance Gas model predictions: good agreement is found in the temperature region below the transition.Comment: 13 pages, 8 figures in Jhep styl

    Cosmological vacuum selection and metastable susy breaking

    Get PDF
    We study gauge mediation in a wide class of O'Raifeartaigh type models where supersymmetry breaking metastable vacuum is created by gravity and/or quantum corrections. We examine their thermal evolution in the early universe and the conditions under which the susy breaking vacuum can be selected. It is demonstrated that thermalization typically makes the metastable supersymmetry breaking cosmologically disfavoured but this is not always the case. Initial conditions with the spurion displaced from the symmetric thermal minimum and a small coupling to the messenger sector can result in the realization of the susy breaking vacuum even if the reheating temperature is high. We show that this can be achieved without jeopardizing the low energy phenomenology. In addition, we have found that deforming the models by a supersymmetric mass term for messengers in such a way that the susy breaking minimum and the susy preserving minima are all far away from the origin does not change the conclusions. The basic observations are expected to hold also in the case of models with an anomalous U(1) group.Comment: 28 pages, 4 figures, plain Latex, journal versio

    Towards Logical Specification of Statistical Machine Learning

    Full text link
    We introduce a logical approach to formalizing statistical properties of machine learning. Specifically, we propose a formal model for statistical classification based on a Kripke model, and formalize various notions of classification performance, robustness, and fairness of classifiers by using epistemic logic. Then we show some relationships among properties of classifiers and those between classification performance and robustness, which suggests robustness-related properties that have not been formalized in the literature as far as we know. To formalize fairness properties, we define a notion of counterfactual knowledge and show techniques to formalize conditional indistinguishability by using counterfactual epistemic operators. As far as we know, this is the first work that uses logical formulas to express statistical properties of machine learning, and that provides epistemic (resp. counterfactually epistemic) views on robustness (resp. fairness) of classifiers.Comment: SEFM'19 conference paper (full version with errors corrected

    Dynamical completions of generalized O'Raifeartaigh models

    Get PDF
    We present gauge theory completions of Wess-Zumino models admitting supersymmetry breaking vacua with spontaneously broken R-symmetry. Our models are simple deformations of generalized ITIY models, a supersymmetric theory with gauge group Sp(N), N+1 flavors plus singlets, with a modified tree level superpotential which explicitly breaks (part of) the global symmetry. Depending on the nature of the deformation, we obtain effective O'Raifeartaigh-like models whose pseudomoduli space is locally stable in a neighborhood of the origin of field space, or in a region not including it. Hence, once embedded in direct gauge mediation scenarios, our models can give low energy spectra with either suppressed or unsuppressed gaugino mass.Comment: 21 pages, 1 figure; v3: reference adde

    A patient on RIPE therapy presenting with recurrent isoniazid-associated pleural effusions: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The clinical scenario of a new or worsening pleural effusion following the initiation of antituberculous therapy has been classically referred to as a 'paradoxical' pleural response, presumably explained by an immunological rebound phenomenon. Emerging evidence suggests that there also may be a role for a lupus-related reaction in the pathophysiology of this disorder.</p> <p>Case presentation</p> <p>An 84-year-old Asian man treated with isoniazid, along with rifampin, pyrazinamide and ethambutol for suspected extrapulmonary tuberculosis, presented with a recurrent pleural effusion, his third episode since the initiation of this therapy. The first effusion occurred one month after the start of treatment, without any prior evidence of pulmonary tuberculosis involvement. Follow-up testing, including thoracoscopic pleural biopsies, never confirmed tuberculosis infection. Further evaluation yielded serological evidence suggesting drug-induced lupus. No effusions recurred following the discontinuation of isoniazid, although other antituberculosis medications were continued.</p> <p>Conclusion</p> <p>The immunological rebound construct is inconsistent with the evolution of this case, which indicates rather that drug-induced lupus may explain at least some cases of new pleural effusions following the initiation of isoniazid.</p

    A genetically encoded reporter of synaptic activity in vivo

    Get PDF
    To image synaptic activity within neural circuits, we tethered the genetically encoded calcium indicator (GECI) GCaMP2 to synaptic vesicles by fusion to synaptophysin. The resulting reporter, SyGCaMP2, detected the electrical activity of neurons with two advantages over existing cytoplasmic GECIs: it identified the locations of synapses and had a linear response over a wider range of spike frequencies. Simulations and experimental measurements indicated that linearity arises because SyGCaMP2 samples the brief calcium transient passing through the presynaptic compartment close to voltage-sensitive calcium channels rather than changes in bulk calcium concentration. In vivo imaging in zebrafish demonstrated that SyGCaMP2 can assess electrical activity in conventional synapses of spiking neurons in the optic tectum and graded voltage signals transmitted by ribbon synapses of retinal bipolar cells. Localizing a GECI to synaptic terminals provides a strategy for monitoring activity across large groups of neurons at the level of individual synapses
    corecore