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Abstract This paper investigates text entry on mobile devices using only five-key. Primarily to 

support text entry on smaller devices than mobile phones, this method can also be used to 

maximise screen space on mobile phones. Reported combined Fitt's law and keystroke modelling 

predicts similar performance with bigram prediction using a five-key keypad as currently achieved 

on standard mobile phones using unigram prediction. User studies reported here show similar user 

performance on five-key pads as found elsewhere for novice nine-key pad users. 

Keywords: predictive text entry user modelling 

Introduction 

Text entry is vitally important to many applications that are becoming common on 

mobile devices, for example text messaging, instant messaging and email. The 

industry has reacted to this requirement by providing devices based around either 

full or half-qwerty keyboards to improve text entry (see figure 1). However, these 

devices either have to compromise the overall size of the device or the screen size 

in order to make space for the larger keypads. In parallel, increased data services 

and the movement of traditional PDA functionality onto phones, puts pressure on 

devices to have larger screens at a time when retail markets still show strong 

pressure for smaller overall device sizes. This paper aims to address these 

contradicting pressures by investigating predictive text entry using only five keys. 
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Figure 1: Palm QWERTY and Blackberry half-QWERTY keypads 

Text entry methods for mobile phones 

Most mobile phones still adhere to the ISO standard 9-key layout for core text 

entry (see figure 2) with letters spread over eight keys plus a space key. This 

results in an ambiguity problem: for example if the user types 2, the phone does 

not know if she wishes an A, B, or C. Traditionally the user manually 

disambiguated each keystroke using the multitap standard, users pressed keys 

multiple times to achieve the letter they wished (e.g. pressing 2 would give A, 22 

B, 222 C, with a timeout or escape key used to separate subsequent letters on the 

same key). This is a slow and error prone form of disambiguation (e.g. [1, 2]), 

often due to the delay around subsequent letters on the same key or missed triple 

clicks on poor quality keypads. Predictive text entry methods attempt to provide 

faster text entry by reducing the disambiguation to a word-by-word basis: the user 

only presses one key per letter then selects from possible matching words after 

each word. To reduce the effort of disambiguation further, words are presented in 

decreasing likelihood of being the correct word. There are many techniques for 

estimating these likelihoods with the most common being to present words that 

match the ambiguous key sequence in decreasing order of frequency of use in the 

expected language. This frequency-based approach, also known as unigram 

approach, is implemented in most standard format mobile phones using 

technology such as Tegic's T9 [3, 4]. 

 

Figure 2: Nokia 5110 ISO standard 9-key keypad 
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Primarily to support text entry on smaller devices than mobile phones, some 

work has been conducted on text entry for smaller keypads using approaches such 

as the date-stamp method (where users use either three-way or five-way joystick 

to enter text on a letter by letter basis). Bellman and MacKenzie [5] investigated 

dynamic rearrangements of the letters to reduce the distance from the start point 

based on probabilistic modelling of the most likely next character, unfortunately 

the results showed no improvement over a fixed QWERTY layout with an 
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average entry speed of about 10wpm, rising to about 15wpm at best.  Dunlop [6] 

reported some initial work on text entry on a five-key pad using a watch-like 

interface. This work used a variation of predictive text entry using only four soft 

keys for letters plus a combined space/next key. This paper builds on that work to 

investigate 5-key text entry on small physical keyboards that can be used to 

optimize screen-space on a phone format device. 

An alternative is the growing move away from physical keypads to touch-

screens, which are more common on PDAs. MacKenzie et al. [7] compared the 

three most common input techniques for stylus based text entry on touch screen 

devices: small on-touch-screen keyboards either in QWERTY or alphabetic layout 

and hand-printing of letters. Their results showed that a standard QWERTY 

layout can achieve around 23wpm while hand-printing achieved only 17wpm (and 

alphabetic soft-keyboard only 13wpm).  While the on-screen QWERTY pad 

achieves decent text entry rates, it has been shown that users can achieve similar 

rates using standard 9-key pads [2] while not requiring users to use a stylus to 

operate the device. 

Evaluation of mobile text entry  

The evaluation of new text entry devices is complex: users take considerable time 

to reach expert user performance and the nature of the devices makes prototyping 

difficult. One solution is to use model-based evaluation techniques early in the 

design to predict performance and complement successful approaches with 

usability studies later in the process. There are two main schools of interaction 

modelling for text entry on mobile devices: movement modelling based around 

Fitt's law [8] for time to press buttons and keystroke modelling of the user action 

sequence [9].  Both have their advantages and a combined model is used here to 

investigate five key text entry.  

Structure of this paper 

The paper first discusses our proposed design for text entry using five-keys. We 

then present performance analysis of how well a text-entry engine can 

disambiguate five-key input compared to nine-key input. These disambiguation 

performance estimates are then used as part of a model of text entry to compare 
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predicted user performance between five-key and nine-key ambiguous text entry. 

We introduce a combined model of performance estimation based on keystroke 

modelling with key timing information from Fitt's law derived movement models 

and use this model to revise our predictions. Finally, we report on a set of user 

trials of a prototype five-key system to investigate novice user performance. 

Design 

The two main motivations behind the development of a five-key text entry method 

for mobile devices are to (a) reduce the space used on devices by the keypad, both 

on current phones to increase screen space and on other smaller devices to permit 

text entry, and (b) to potentially increase speed by reducing finger movement. Our 

design is based around a five-key ambiguous keypad with four alphabetic keys 

and a combined space/next key, and is similar to that developed for watch-top 

touch screens [6]. Users press one key per letter to enter a word followed by space 

– the first press of the space key after a word inserts a space (highlighted as _ on 

the interface) with subsequent presses of the space key rotating round matching 

suggestions (in a similar fashion to the next key on many T9 phones). To aid users 

a small area of the screen is used to give a guide to which letters are on which 

keys, using visual clues to guide text entry [10] this area dims letters that are not 

possible given the letters already entered (thus helping users to spot letters they 

are looking for).  

Figure 3 shows a paper prototype of the ideal implementation of our 

interface on a phone size device: five entry keys above two soft-keys and arranged 

around a 5-way joystick at the top of a phone with a large screen (using top 

section of screen for key-guide while entering text). This shows how the new 

interface can be used to maximise screen space, giving a screen area of 

approximately 22cm2 compared to the standard phone screen of 9cm2 on the same 

size device, in addition to a more comfortable and stable grasp.  



   

Figure 3: paper prototype of ideal 5-key text phone 

Figure 4 shows the current J2ME prototype implementation as used in user 

experiments discussed later. This prototype uses only the top part of a nine-key 

traditional phone pad with quarter of the alphabet allocated to each of buttons 1, 

4, 3 and 6 with 2 acting as combined space/next key. Figure 4 shows the prototype 

interface for a user entering the phrase "hello how are you" – note the lower-right 

(6) button on the key-guide showing that only u is valid as the next letter on that 

key.  

     

Figure 4: current implementation 

While the experiments reported here focus only on alphabetic text entry, we 

envisage the on-screen display being used to support modal entry of punctuation 

and numbers (chords could be used for common punctuation, e.g. bottom two 

keys for a period, while a joystick controlled keyboard could be used for out-of-

dictionary word entry and for numeric entry). One of our design aims was to 

maintain the joystick and soft-keys for editing and application control as normal 

but these could be used in conjunction with text entry keys as modifiers. 

With ambiguous keypads the layout of keys affects the performance of the 

text entry method: for example, putting all the vowels on one key would mean 

5 
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common words such as on, in and an would all have the same key sequence. 

Attempts at optimised keypads (e.g. [6, 11]) have, however, shown only a 

marginal increase in theoretical performance over alphabetic arrangement of keys 

and much slower user input due to time spent searching for letters on, to a user’s 

viewpoint, randomly located keys. Thus, the experiments reported here have all 

been conducted with an alphabetic arrangement of keys shown in figure 4. This is 

actually slightly sub-optimal compared to the best alphabetically constrained key 

arrangement, which is collection dependent [11]. We estimate that the results 

reported below would be marginally affected by changes to optimal alphabetic 

keyboards and improved by around 2% for fully unconstrained optimised 

keyboard layout. 

Performance analysis 

Standard predictive text entry models (including Tegic's T9 and Dunlop & 

Crossan's [1]) are based on unigram models of prediction: words are suggested 

based purely on frequency of occurrence information for words that match the 

number sequence entered. With predictive text on a standard 9-key pad, on 

entering 4663 a user is presented with words that can be composed from GHI as 

the first letter followed by MNO and MNO then DEF – these are typically 

presented in descending order of frequency in English usage as expected on a 

mobile phone. For example a standard T9 enabled phone will suggest good, home, 

gone, hood, hoof etc. More advanced models can adjust predictions to make them 

more likely to be correct, in particular bigram models [12, 13] bias predictions 

based on the previous word – so that ranking is based on frequency of occurrences 

of word wn following word wm, for example home would be more likely than good 

after the word at. To assess the likely impact of reducing the number of keys from 

nine to five, we calculated best case unigram and bigram predictions using two 

corpora: a sub-set of The Herald collection used in Dunlop & Crossan [1] and the 

Singapore SMS corpus [14]. To simplify analysis and focus on core text-entry 

speeds, both collections were pre-processed to leave only alphabetic characters 

separated by spaces and newlines.  

In both cases the average ranked-list position (ARP) was calculated by 

learning statistics from the collection then running through the collection 
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averaging the position of the expected word in suggested ranked list given the 

ambiguous key-coding of the expected word. An ARP value of 1.0 would indicate 

that the required word was always in the first position in the ranked list of 

suggestions, a value of 2.0 that on average the required word was second in the 

ranked list. This approach to averaging naturally biases the averaging process so 

that words are taken into account proportionally to their occurrence in the text 

collection. For unigram prediction all words were ranked in decreasing frequency 

for each key combination, for bigram the same ranking was used but based solely 

on frequency of the word occurring after the previous word in the sentence. As an 

example, given the phrase "are you home" in the text collection the word home is 

converted to its numeric equivalent (4663). A ranked list is calculated to predict 

suggestions for 4663 with the position of home in that list taken as the ranked-list 

position for that word (position 2 in the case of T9’s standard offer list). The 

suggestions for 4663 are based on the frequency of all words matching 4663 for 

the unigram model while the bigram model bases the suggestions on frequencies 

of words occurring after you. This approach gives a good approximation to the 

performance expected in-use once a prediction engine is tuned to the language. 

However, this approach to modelling avoids two common problems with 

predictive text entry: out of dictionary words for both approaches and sparse 

frequency information for bigram models. Predictive text-entry models can only 

predict known words and alternative input techniques are required for out-of-

dictionary words, which are normally stored in the user dictionary – so need only 

be entered once per device. Bigram models rely on knowing considerable 

statistical information about words – for rare words some combinations may 

simply not have been seen before, even though the individual words have. There 

has been considerable work (e.g. [15, 16]) on adjusting bigram models to, 

essentially, degrade gently to unigram models when either there is no bigram 

statistics for the word-code combination or the confidence of those statistics is 

low. Experiments reported here use a simple bigram model, as the training method 

ensures usable statistics. 

The literature commonly uses three different methods for reporting the 

performance of text entry methods. Above we have used average ranked list 

position (e.g. [1]), alternatives are disambiguation accuracy (DA) and keystrokes 
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per character (KSPC). Disambiguation accuracy (e.g. [11]) reports the percentage 

of times the first word suggested by the disambiguation engine is the word the 

user intended – a DA value of 100% implies the disambiguation engine always 

give the correct word first, while 50% indicates that it only manages to give the 

correct word first half of the time. This is an intuitive and very direct measure but 

does not take into account the performance of words that do not come first in the 

list. KSPC (e.g. [6]) reports the average number of keystrokes required to enter a 

character, for example home on a standard T9 mobile phone requires 5 keystrokes 

– 4663*, where * is the next suggestion key, giving a KSPC for that word of 

5/4=1.25. A KSPC value of 1.0 indicates perfect disambiguation as the user never 

needs to type any additional letters, while a higher figure reflects the proportional 

need for the next key in disambiguation. KSPC does take into account ranked list 

position for all words and compares well with non-predictive models, however it 

is a rather abstract measure being based on letters for inherently word-based 

methods. Given a standard word length of 5 letters per word (including space), 

ARP = KSPCx5-4. All methods are normally averaged over a large corpus.  

Based on the first million lines of The Herald collection (9 141 467 words 

with average of 4.73 letters per word excluding space), table 1 shows the ARP, 

DA and KSPC values for unigram and bigram prediction on both five-key and 

nine-key keypads. This shows that (a) nine-key text disambiguation is 

considerably more accurate that five-key; (b) that disambiguation is considerably 

more accurate with bigram modelling and (c) that bigram modelling improves 

five-key entry proportionally more than nine-key entry. 

 

Herald Collection  

5-key 9-key 

unigram 1.554 ARP 

80% DA 

1.097 KSPC 

1.058 ARP 

96% DA 

1.010 KSPC 

bigram 1.148 ARP 

92% DA 

1.026 KSPC 

1.017 ARP 

99% DA 

1.003 KSPC 

Table 1: average ranked list position of required word in The Herald collection 
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Table 2 shows the same experiment and results pattern for the Singapore 

SMS corpus [14] (121 126 words with an average 3.49 letters per word ex-space). 

 

 SMS Collection 

 5-key 9-key 

unigram 

1.832 ARP 

66% DA 

1.185 KSPC 

1.135 ARP 

90% DA 

1.030 KSPC 

bigram 

1.199 ARP 

87% DA 

1.044 KSPC 

1.028 ARP 

98% DA 

1.006 KSPC 

Table 2: average ranked list position of required word in Singapore SMS collection 

For comparison: full-sized non-ambiguous keyboards achieve KSPC=1.00, 

standard date-stamp method for entering text on 3 keys achieves KSPC=6.45, 

date-stamp like interaction on 5 keys achieves KSPC=3.13 and multitap on a 

standard 9-key mobile phone achieves KSPC=2.03 [17]. Gong and Tarasewich 

[11] reported DA for 5-key and 9-key at 85% and 97% respectively for written 

English corpus and 69% and 92% for SMS messages. Hasselgren et al. [12] used 

bigram modelling with word completion, where words were suggested before the 

user had finished entering them (leading to sub-1.0 KSPC figures [17]). Their 

results report KSPC of 1.01 and 1.08 for T9 using Swedish news and SMS 

corpora respectively, improving to 1.01 and 0.88 respectively for their bigram 

model with word completion suggestions. As a comparison for Hallegran et al.'s 

work, unigram word completion has been estimated to reduce KSPC by around 

25% for a 9-key keypad (but to lead to potential cognitive load problems) [1]. 

Keystroke level modelling (KLM) 

To gain an insight into potential expert user behaviour with different keyboards, 

different approaches have been taken to modelling interaction in order to predict 

expert (trained, error-free) performance. Dunlop and Crossan [1] proposed a 

model based on Card, Moran and Newall's keystroke modelling [9]. The model is 

based on predicting the time T(P) taken by an expert user to enter a given phrase 

P, performing without errors and containing only alphabetic words. These 
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restrictions are clearly severe limitations on this modelling approach. However, 

while more complex modelling approaches have been researched to support 

novices, model more complete interaction and model error behaviour (e.g. [18, 

19]), we believe that this relatively simple performance figure complements user 

studies and is a reasonably accurate and worthwhile estimate of expected peak 

performance of a text entry system. 

The keystroke model is based on building an equation to represent the user 

activity by summing a set of small time measurements, in the case of text entry 

the appropriate times are: the homing time for the user to settle on the keyboard 

Th; the time it takes a user to press a key Tk; and the time it takes the user to 

mentally respond to a system action Tm. Dunlop and Crossan [1] modelled 

predictive text entry on a sentence where disambiguation occurs as extra 

characters representing moving down the ranked list of suggestions, their overall 

time equation is as follows: 

T(P) = Th + w (kwTk + l(Tm + Tk)) 

Equation 1: Dunlop and Crossan's KLM model 

In equation 1, w represents the number of words in the phrase, kw is the 

number of letters per word (renamed here from their kp) and l the ARP measure 

(average position in the suggested word list of the correct word). In that paper the 

calculation led to a predicted speed of 17.7 words per minute (wpm). Pavlovych 

& Stuerzlinger [18] later modified the calculation by correcting double counting 

of the first space key after a word by changing kw to 4.98, leading to a predicted 

speed of 19.3 wpm1. Table 3 shows details of the calculation for both sets of data. 

 
1 The figure of 19.3 wpm represents our revision of Dunlop and Crossan using Pavlovych and Stuerzlinger's 

observations, which differs numerically from their Pavlovych and Stuerzlinger's.  
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Dunlop & 

Crossan 

As revised by 

Pavlovych & 

Stuerzlinger 

Th 0.4 0.4 

w 10 10 

kw 5.98 4.98 

Tk 0.28 0.28 

l 1.03 1.03 

Tm 1.35 1.35 

T10 33.9s 31.2s 

speed 17.7wpm 19.3wpm 

Table 3: nine-key unigram prediction time and speed 

James and Reischel [2] carried out focused user experiments on both novice 

and experienced users of T9. They reported a measured T9 performance averaging 

at 20.4 wpm for experts, within 10% of the keystroke level modelling prediction 

from table 3. For comparison handwriting with ink and paper achieves around 20 

to 30 words per minute while desktop typists can achieve in excess of 150 wpm, 

though this drops considerably for non-secretary users and for composition rather 

than transcription (e.g. Karat et al [20] found speeds of 33wpm transcription 

dropping to 19wpm for composition). 

Simple unigram and bigram modelling  

Equation 1 has constant values for Th, w, Tk and Tm with other values being 

dependent on the disambiguation engine and the text collection in use. Based on 

the performance analysis reported above, table 4 shows the predicted words-per-

minute for unigram and bigram predictions using the two test collections, while 

table 5 gives more details on the parameters of equation 1. This shows that 

moving to bigram prediction improves performance by 2-6% for a nine-key 

keypad and 20-34% for the five-key keypad. Furthermore, the improvement in 

moving to bigram prediction brings the five-key keypad from around 26-40% 

slower than nine-key down to only around 7-10% slower.  
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9-key

wpm 

5-key

wpm 

herald unigram 19.42 15.39

herald bigram 19.85 18.54

sms unigram 20.93 14.99

sms bigram 22.28 20.19

Table 4: Summary KLM model predicted results 

 

  kw l T10 (s) wpm

unigram 4.73 1.058 30.89 19.429-key 

Herald bigram 4.73 1.017 30.22 19.85

unigram 3.49 1.135 28.67 20.939-key 

SMS bigram 3.49 1.028 26.93 22.28

unigram 4.73 1.554 38.97 15.395-key 

Herald bigram 4.73 1.148 32.36 18.54

unigram 3.49 1.832 40.03 14.995-key 

SMS bigram 3.49 1.199 29.72 20.19
Table 5: Variable KLM model parameters and predicted results 

Adjusting model for variable keystroke times 

Dunlop and Crossan modelled keystroke speed at 0.28s based on a fixed figure 

from Card et al.'s figure of equivalent to "an average non-secretary typist" on a 

full QWERTY keypad [9]. As supported by James and Reischel [2], equation 1 

works well, however it cannot take into account one of the main motivations for 

the five-key keypad: reduced finger movement decreasing the time taken to press 

each key. Mackenzie's group have conducted considerable work on using Fitt's 

law [8] for calculating the limit of performance given distance between keys and a 

language model for the movement required between keys to enter text with a 

given text entry scheme (e.g. [21]).  In the basic form their modelling predicts 

40.6 wpm for thumb-based T9 input assuming no next key operations, with 5 

characters per word this equates to an average keying time of 0.30s (without 

thinking or homing times).  
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Based on the same phone model used in their paper (a Nokia 5110, figure 

4), we have examined the total time for entering a large block of text according to 

their model using both nine-key and five-key keypads. Our results give a 

weighted average time per key of 0.26s for the nine-key pad and 0.22s for the 

five-key pad (the slight difference being due to corpus effects – the movement 

models are derived from and conditional upon analysis of a large corpus of text). 

Feeding these figures directly into equation 1 (replacing Tk as appropriate in table 

5) gives the words per minute predictions in table 6. 

 
9-key

wpm 

5-key

wpm 

herald unigram 20.18 17.04

herald bigram 20.64 20.81

sms unigram 21.62 16.29

sms bigram 23.05 22.30

Table 6:revised KLM models adjusting for distance calculations 

Table 6 shows that the five-key keypad is predicted to perform roughly 

equivalently to a nine-key keypad when bi-gram prediction is used and reduced 

keying time is taken into account (1% better on The Herald collection, 3% slower 

on the SMS collection). Furthermore, five-key performance with bigram 

prediction is predicted to marginally out perform standard unigram prediction on 

nine-key keypads for both test collections. 

Improving these models 

The distance model above, while taking into account some aspects of physical 

keyboard layout, has two inaccuracies that can noticeably affect predictions: 

repeat keys and parallel finger movements. Repeat keys, where subsequent letters 

are on the same key, are not modelled correctly with  Fitt's law, which tends to 

underestimate zero distance movements. Soukoreff and MacKenzie [22] 

conducted user experiments on a modified Fitt's law model that includes a 

separate estimated time for repeat keys. The standard Fitt's law model also does 

not take into account one of the main speed gains of touch typing: being able to 

move fingers on one hand in preparation while still typing with the other hand. 

The same team also showed separately that this can impact on two-thumbed text 
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entry where one thumb can be moving to the appropriate key in parallel with the 

key press on the other thumb [23].  

We recalculated our predictions based on modelling both repeat-key timing 

and two-thumbed parallel movements. Again we simplified the models from the 

distance papers by using them simply to estimate the average key-stroking times 

for our KLM modelling. Assuming users are using two-thumbs to enter text, our 

initial modelling gave key times of 0.27s for The Herald collection with a 9-key 

keypad and 0.25s for the SMS collection, reducing to 0.23s and 0.22s respectively 

on the 5-key keypad. Table 7 shows the key stroke time for the different 

modelling and collection combinations for 9-key pad and the resulting predicted 

text entry speed for both unigram and bigram prediction. Table 8 shows the same 

data for 5-key pad. 

 

  Tk unigram bigram 

simple 0.27 19.9 20.4 

repeat-key 0.25 20.9 21.4 

two-thumb 0.18 23.8 24.4 
Herald 

both 0.17 24.1 24.7 

simple 0.25 22.0 23.4 

repeat-key 0.24 22.9 24.5 

two-thumb 0.18 25.0 26.9 
SMS 

both 0.17 25.2 27.1 

Table 7: Predicted words-per-minute for 9-key pad using different prediction models 
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  Tk unigram bigram 

simple 0.23 16.7 20.4 

repeat-key 0.22 17.3 21.1 

two-thumb 0.16 19.1 23.7 
Herald 

complex 0.15 19.0 23.7 

simple 0.22 16.3 22.3 

repeat-key 0.21 16.7 23.0 

two-thumb 0.15 18.0 25.2 
SMS 

complex 0.15 17.8 25.0 

Table 8: Predicted words-per-minute for 5-key pad using different prediction models 

These tables show that, averaged over the two collections, our initial simple 

predictions show a drop of around 21% in words per minute when moving from a 

9-key to a 5-key keypad using simple unigram word prediction. This difference 

drops to only 3% when using bigram prediction, with simple Fitt's law modelling 

of keystroke times. When we take into account increased times for repeat-keys 

and reduced times when swapping thumbs the predicted performance drop for the 

5-key keypad increases to 6% when comparing bigram prediction on 5-key and 9-

key pads. However, bigram prediction on 5-key pads is still only 2% slower 

overall than unigram prediction on 9-key pads, showing predicted 5-key 

performance roughly in-line with the prevalent current mobile phone text entry 

approach. 

User trials 

Keystroke level modelling is useful for predicting expert user performance but is 

focussed on expert error-free performance and gives little feedback on how new 

users find a technology to use. To address this we conducted a controlled usability 

experiment with users entering text phrases in a controlled setting.  

Experimental Equipment and Users 

A set of sentences were collected from members of the department who regularly 

send text messages. They were asked to write some messages that were in the 

style of those they typically send/receive. The messages were edited to expand 
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any SMS shorthand (e.g. ur converted to your), remove punctuation marks, 

convert numbers into their written form (e.g. replacing 8 with eight) and remove 

capitalisation. Although not natural these edits were consistent between test 

interfaces, more closely match the earlier technical studies and can be justified as 

gaining an insight into peak text entry rates that are not affected by modal 

changes. The final 20 sentences were randomly shuffled to give the trial test 

phrases. 

Twenty staff and students of the Computer and Information Sciences 

Department at University of Strathclyde took part in the experiment (ages ranged 

from 24-45, 6 female/14 male, 2 dominent-left-handed/18 right). Fifteen of these 

users considered themselves to be regular senders of text messages, four rarely 

sent messages and one user had never sent a text message. Fourteen of the 

subjects regularly used T9 prediction when messaging.  

Experiments were all conducted on a Sony Ericsson K300i handset running 

a dedicated J2ME editor that was identical for both 5-key and 9-key text entry bar 

the provision of an on-screen guide to key-mapping for 5-key entry (as shown in 

Figure 4 and 5). Although not the ideal format for 5-key entry, we felt this was the 

best experimental compromise between appropriateness and consistency. Both 

versions of the text engine used the same small dictionary with a unigram 

prediction model. 

Experimental Process 

The participants were asked to complete a short pre-experiment questionnaire on 

demographic information and text message usage. The participants were then 

given a demonstration of our application and our approach to nine-key text entry. 

To recap, our approach differed from standard T9 in use of the space key to 

double as next key. It also varied from some handsets in that only 0 and # were 

supported as space keys (unfortunately ruling out the normal 1 key for users of 

certain brands of handsets).  

After the demonstration participants were asked to enter 10 sentences using 

the nine-key layout on the mobile phone handset. 

The participants were then given a demonstration of the five-key layout and 

instructed to enter 10 sentences using this layout. 



Finally, the participants were then asked to complete a feedback form to 

indicate their preference between the keypads and give any comments on either 

keypad layout. 

Using a GPRS data connection, key-strokes were recorded each time the 

space key was pressed. These records were time stamped in tenths of a second and 

recorded the display status at that point. 

 

Figure 5: five-key and nine-key prototypes as used in user study  

Results 

The results shown in figure 6 summarise the average text entry rate for users over 

the last eight phrases (the first two are excluded to allow users to settle in with the 

device and technique).  
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Figure 6: user-averaged text entry speed over last eight phrases 

The results show that, averaged over all users and tasks, nine-key entry was 

approximately 21wpm while five-key is around 12wpm. James and Reischel [2] 

measured 9-key users entering chat-style message at between 11 and 26 wpm 
17 
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depending on experience – in line with our studies, given our profile of users and 

slight differences in prior experience. Furthermore our result for novice five-key 

users is in line with their novice nine-key user speed of around 11 wpm. The 

results also show a clear positive trend for 5-key usage compared to a steady 

performance for 9-key entry. 

In discussion with the users several participants stated that they could see 

the benefit of having fewer keys to allow devices to be made smaller. Many found 

that the key-guide for 5-key entry acted as an effective spelling guide since letters 

were greyed out that would not create a possible word in the dictionary, although 

some mentioned that they felt locked in by this spelling assistance. Furthermore, 

several participants found that this display made it was easier to resume text entry 

after a distraction – an aspect of the outcomes we are investigating further. Many 

reported that they felt any difficulties in using 5-key entry would reduce over time 

since they were trying to break pre-programmed 9-key and T9 habits and that they 

felt they were performing better towards the end of the experiment. Interestingly, 

despite requiring more keystrokes in 5-key entry, several participants mentioned 

that they felt they had to make fewer "clicks" when using 5-key entry. We can 

only conclude that this impression was due to less key-searching and/or finger 

movement. Finally, some subjects mentioned that they did not like looking at the 

screen. Continuous focus on the screen is an intended benefit of 5-key entry and 

we feel the likely cause of this reaction was the use of the 9-key pad for 

experiments, where users are used to checking the labels on keys. 

Future work 

Although often used while stationary, designing for mobile users puts new 

challenges on the design on interfaces. [24] and [25] have studied the effect of 

different sized on-screen buttons on walking speed and data-entry errors. The 

five-key pad proposed here lends itself to reduced vision load compared to soft 

keypads or printing, with physical keys rather than screen areas and expert users 

only needing to check each word instead of each letter. However, this checking 

needs to be done more carefully than with a 9-key pad with the same prediction 

engine. Studies are planned to investigate 5-key text entry for walkers to assess 

the impact of this on real mobile use. 
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We also plan to conduct a longitudinal study of five-key text entry using a 

fuller prototype system that will support full text entry (including numbers, 

punctuation and out of dictionary words).  

Conclusions 

This paper reported our investigation into predictive text entry using five keys. 

This work was motivated by three desires: to reduce the space taken up by 

keyboards on mobile phones, to extend predictive text entry to other formats of 

mobile devices and to reduce finger movement distances in the hope of improving 

text entry speed.  

An investigation into purely technical performance of both unigram and 

bigram predictive text entry showed that five-key text entry was considerably 

poorer than nine-key for unigram modelling for both written English and SMS 

corpora.  However, the quality of predictions was considerably increased and the 

difference between keypads reduced when bigram modelling was used.  

These figures were then used as the basis for keystroke level modelling of 

users entering text. Simple keystroke modelling with fixed keying times, showed 

a speed reduction of around 21% for five-key text entry. These models were then 

refined to take into account the reduced finger movement times for five-key text 

entry using methods derived from Fitt's law, this resulted in new predictions that 

five-key text entry would be within approximately 6% of the performance of nine-

key when both are using bigram modelling. Furthermore, five-key text entry using 

bi-gram modelling was predicted to perform very close to the level of standard 

nine-key unigram modelling. 

Finally, users trials were conducted to gain an impression of non-experts 

usage of five-key text entry. Using a prototype system on a mobile phone handset 

with unigram prediction, users achieved approximately 12 words-per-minute 

using five-key entry and 21 words-per-minute for nine-key. While much slower 

on five-keys, these figures are in line with, respectively, novice and expert speeds 

reported elsewhere for 9-key pads. 

Through our combined keystroke and Fitt's law modelling we have 

predicted that five-key text entry using bigram word prediction will perform 

equivalently to current nine-key technology for expert users. Furthermore, our 
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user trials have shown similar user performance using five-key to novice nine-key 

users in other trials. Combined, while not achieving one of our aims of faster text 

entry, we believe that these results show that five-key keypads can be used as a 

replacement for current nine-key text entry without noticeable loss of text entry 

speed. 

Acknowledgements: Once again we extend our gratitude to our users in our user trials. 
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