46 research outputs found

    Studies in RF power communication, SAR, and temperature elevation in wireless implantable neural interfaces

    Get PDF
    Implantable neural interfaces are designed to provide a high spatial and temporal precision control signal implementing high degree of freedom real-time prosthetic systems. The development of a Radio Frequency (RF) wireless neural interface has the potential to expand the number of applications as well as extend the robustness and longevity compared to wired neural interfaces. However, it is well known that RF signal is absorbed by the body and can result in tissue heating. In this work, numerical studies with analytical validations are performed to provide an assessment of power, heating and specific absorption rate (SAR) associated with the wireless RF transmitting within the human head. The receiving antenna on the neural interface is designed with different geometries and modeled at a range of implanted depths within the brain in order to estimate the maximum receiving power without violating SAR and tissue temperature elevation safety regulations. Based on the size of the designed antenna, sets of frequencies between 1 GHz to 4 GHz have been investigated. As expected the simulations demonstrate that longer receiving antennas (dipole) and lower working frequencies result in greater power availability prior to violating SAR regulations. For a 15 mm dipole antenna operating at 1.24 GHz on the surface of the brain, 730 uW of power could be harvested at the Federal Communications Commission (FCC) SAR violation limit. At approximately 5 cm inside the head, this same antenna would receive 190 uW of power prior to violating SAR regulations. Finally, the 3-D bio-heat simulation results show that for all evaluated antennas and frequency combinations we reach FCC SAR limits well before 1 °C. It is clear that powering neural interfaces via RF is possible, but ultra-low power circuit designs combined with advanced simulation will be required to develop a functional antenna that meets all system requirements. © 2013 Zhao et al

    Postoperative serum proteomic profiles may predict recurrence-free survival in high-risk primary breast cancer

    Get PDF
    Item does not contain fulltextPURPOSE: Better breast cancer prognostication may improve selection of patients for adjuvant therapy. We conducted a retrospective longitudinal study in which we investigated sera of high-risk primary breast cancer patients, to search for proteins predictive of recurrence-free survival. METHODS: Sera of 82 breast cancer patients obtained after surgery, but prior to the administration of adjuvant therapy, were fractionated using anion-exchange chromatography, to facilitate the detection of the low-abundant serum peptides. Selected fractions were subsequently analysed by surface-enhanced laser desorption/ionisation time-of-flight mass spectrometry (SELDI-TOF MS), and the resulting protein profiles were searched for prognostic markers by appropriate bioinformatics tools. RESULTS: Four peak clusters (i.e. m/z 3073, m/z 3274, m/z 4405 and m/z 7973) were found to bear significant prognostic value (P </= 0.01). The m/z 3274 candidate marker was structurally identified as inter-alpha-trypsin inhibitor heavy chain 4 fragment(658-688) in serum. Except for the m/z 7973 peak cluster, these peaks remained independently associated with recurrence-free survival upon multivariate Cox regression analysis, including clinical parameters of known prognostic value in this study population. CONCLUSION: Investigation of the postoperative serum proteome by, e.g., anion-exchange fractionation followed by SELDI-TOF MS analysis is promising for the detection of novel prognostic factors. However, regarding the rather limited study population, validation of these results by analysis of independent study populations is warranted to assess the true clinical applicability of discovered prognostic markers. In addition, structural identification of the other markers will aid in elucidation of their role in breast cancer prognosis, as well as enable development of absolute quantitative assays

    SIP metagenomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading bacteria in soil and lake sediment.

    Get PDF
    Dimethylsulphide (DMS) has an important role in the global sulphur cycle and atmospheric chemistry. Microorganisms using DMS as sole carbon, sulphur or energy source, contribute to the cycling of DMS in a wide variety of ecosystems. The diversity of microbial populations degrading DMS in terrestrial environments is poorly understood. Based on cultivation studies, a wide range of bacteria isolated from terrestrial ecosystems were shown to be able to degrade DMS, yet it remains unknown whether any of these have important roles in situ. In this study, we identified bacteria using DMS as a carbon and energy source in terrestrial environments, an agricultural soil and a lake sediment, by DNA stable isotope probing (SIP). Microbial communities involved in DMS degradation were analysed by denaturing gradient gel electrophoresis, high-throughput sequencing of SIP gradient fractions and metagenomic sequencing of phi29-amplified community DNA. Labelling patterns of time course SIP experiments identified members of the Methylophilaceae family, not previously implicated in DMS degradation, as dominant DMS-degrading populations in soil and lake sediment. Thiobacillus spp. were also detected in (13)C-DNA from SIP incubations. Metagenomic sequencing also suggested involvement of Methylophilaceae in DMS degradation and further indicated shifts in the functional profile of the DMS-assimilating communities in line with methylotrophy and oxidation of inorganic sulphur compounds. Overall, these data suggest that unlike in the marine environment where gammaproteobacterial populations were identified by SIP as DMS degraders, betaproteobacterial Methylophilaceae may have a key role in DMS cycling in terrestrial environments.HS was supported by a UK Natural Environment Research Council Advanced Fellowship NE/E013333/1), ÖE by a postgraduate scholarship from the University of Warwick and an Early Career Fellowship from the Institute of Advanced Study, University of Warwick, UK, respectively. Lawrence Davies is acknowledged for help with QIIME

    MDA5 and TLR3 Initiate Pro-Inflammatory Signaling Pathways Leading to Rhinovirus-Induced Airways Inflammation and Hyperresponsiveness

    Get PDF
    Rhinovirus (RV), a single-stranded RNA picornavirus, is the most frequent cause of asthma exacerbations. We previously demonstrated in human bronchial epithelial cells that melanoma differentiation-associated gene (MDA)-5 and the adaptor protein for Toll-like receptor (TLR)-3 are each required for maximal RV1B-induced interferon (IFN) responses. However, in vivo, the overall airway response to viral infection likely represents a coordinated response integrating both antiviral and pro-inflammatory pathways. We examined the airway responses of MDA5- and TLR3-deficient mice to infection with RV1B, a minor group virus which replicates in mouse lungs. MDA5 null mice showed a delayed type I IFN and attenuated type III IFN response to RV1B infection, leading to a transient increase in viral titer. TLR3 null mice showed normal IFN responses and unchanged viral titers. Further, RV-infected MDA5 and TLR3 null mice showed reduced lung inflammatory responses and reduced airways responsiveness. Finally, RV-infected MDA5 null mice with allergic airways disease showed lower viral titers despite deficient IFN responses, and allergic MDA5 and TLR3 null mice each showed decreased RV-induced airway inflammatory and contractile responses. These results suggest that, in the context of RV infection, binding of viral dsRNA to MDA5 and TLR3 initiates pro-inflammatory signaling pathways leading to airways inflammation and hyperresponsiveness

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1ÎČ, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1ÎČ innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Back on track – On the role of the microtubule for kinesin motility and cellular function

    Full text link
    The evolution of cytoskeletal filaments (actin- and intermediate-filaments, and the microtubules) and their associated motor- and non-motor-proteins has enabled the eukaryotic cell to achieve complex organizational and structural tasks. This ability to control cellular transport processes and structures allowed for the development of such complex cellular organelles like cilia or flagella in single-cell organisms and made possible the development and differentiation of multi-cellular organisms with highly specialized, polarized cells. Also, the faithful segregation of large amounts of genetic information during cell division relies crucially on the reorganization and control of the cytoskeleton, making the cytoskeleton a key prerequisite for the development of highly complex genomes. Therefore, it is not surprising that the eukaryotic cell continuously invests considerable resources in the establishment, maintenance, modification and rearrangement of the cytoskeletal filaments and the regulation of its interaction with accessory proteins. Here we review the literature on the interaction between microtubules and motor-proteins of the kinesin-family. Our particular interest is the role of the microtubule in the regulation of kinesin motility and cellular function. After an introduction of the kinesin–microtubule interaction we focus on two interrelated aspects: (1) the active allosteric participation of the microtubule during the interaction with kinesins in general and (2) the possible regulatory role of post-translational modifications of the microtubule in the kinesin–microtubule interaction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42588/1/10974_2005_Article_9052.pd

    Antimicrobial protein and Peptide concentrations and activity in human breast milk consumed by preterm infants at risk of late-onset neonatal sepsis

    Get PDF
    Objective: We investigated the levels and antimicrobial activity of antimicrobial proteins and peptides (AMPs) in breast milk consumed by preterm infants, and whether deficiencies of these factors were associated with late-onset neonatal sepsis (LOS), a bacterial infection that frequently occurs in preterm infants in the neonatal period. Study design: Breast milk from mothers of preterm infants (≀32 weeks gestation) was collected on days 7 (n = 88) and 21 (n = 77) postpartum. Concentrations of lactoferrin, LL-37, beta-defensins 1 and 2, and alpha-defensin 5 were measured by enzyme-linked immunosorbent assay. The antimicrobial activity of breast milk samples against Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, and Streptococcus agalactiae was compared to the activity of infant formula, alone or supplemented with physiological levels of AMPs. Samples of breast milk fed to infants with and without subsequent LOS were compared for levels of AMPs and inhibition of bacterial growth. Results: Levels of most AMPs and antibacterial activity in preterm breast milk were higher at day 7 than at day 21. Lactoferrin was the only AMP that limited pathogen growth >50% when added to formula at a concentration equivalent to that present in breast milk. Levels of AMPs were similar in the breast milk fed to infants with and without LOS, however, infants who developed LOS consumed significantly less breast milk and lower doses of milk AMPs than those who were free from LOS. Conclusions: The concentrations of lactoferrin and defensins in preterm breast milk have antimicrobial activity against common neonatal pathogens
    corecore