15 research outputs found

    A novel copro-diagnostic molecular method for qualitative detection and identification of parasitic nematodes in amphibians and reptiles

    Get PDF
    © 2017 Huggins et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Anthropogenic disturbance via resource acquisition, habitat fragmentation and climate change, amongst other factors, has led to catastrophic global biodiversity losses and species extinctions at an accelerating rate. Amphibians are currently one of the worst affected classes with at least a third of species categorised as being threatened with extinction. At the same time, they are also critically important for many habitats and provide man with a powerful proxy for ecosystem health by acting as a bioindicator group. Whilst the causes of synchronised amphibian losses are varied recent research has begun to highlight a growing role that macroparasites are playing in amphibian declines. However, diagnosing parasite infection in the field can be problematic, principally relying on collection and euthanasia of hosts, followed by necropsy and morphological identification of parasites in situ. The current study developed a non-invasive PCR-based methodology for sensitive detection and identification of parasitic nematode DNA released in the faeces of infected amphibians as egg or tissue fragments (environmental DNA). A DNA extraction protocol optimised for liberation of DNA from resilient parasite eggs was developed alongside the design of a novel, nematode universal, degenerate primer pair, thus avoiding the difficulties of using species specific primers in situations where common parasite species are unknown. Used in conjunction this protocol and primer pair was tested on a wide range of faecal samples from captive and wild amphibians. The primers and protocol were validated and detected infections, including a Railletnema nematode infection in poison dart frogs from ZSL London Zoo and Mantella cowani frogs in the wild. Furthermore, we demonstrate the efficacy of our PCR-based protocol for detecting nematode infection in other hosts, such as the presence of pinworm (Aspiculuris) in two tortoise species and whipworm (Trichuris muris) in mice. Our environmental DNA approach mitigates problems associated with microscopic identification and can be applied to detect nematode parasitoses in wild and captive hosts for infection surveillance and maintenance of healthy populations

    Host immunity, nutrition and coinfection alter longitudinal infection patterns of schistosomes in a free ranging African buffalo population

    No full text

    Genetically diverse Plasmodium falciparum infections, within-host competition and symptomatic malaria in humans

    No full text
    International audienceThere is a large genetic diversity of Plasmodium falciparum strains that infect people causing diverse malaria symptoms. This study was carried out to explore the effect of mixed-strain infections and the extent to which some specific P. falciparum variants are associated with particular malaria symptoms. P. falciparum isolates collected during pharmacovigilance study in Nanoro, Burkina Faso were used to determine allelic variation in two polymorphic antigens of the merozoite surface (msp1 and msp2). Overall, parasite density did not increase with additional strains, suggesting the existence of within-host competition. Parasite density was influenced by msp1 allelic families with highest parasitaemia observed in MAD20 allelic family. However, when in mixed infections with allelic family K1, MAD20 could not grow to the same levels as it would alone, suggesting competitive suppression in these mixed infections. Host age was associated with parasite density. Overall, older patients exhibited lower parasite densities than younger patients, but this effect varied with the genetic composition of the isolates for the msp1 gene. There was no effect of msp1 and msp2 allelic family variation on body temperature. Haemoglobin level was influenced by msp2 family with patients harboring the FC27 allele showing lower haemoglobin level than mono-infected individuals by the 3D7 allele. This study provides evidence that P. falciparum genetic diversity influenced the severity of particular malaria symptoms and supports the existence of within-host competition in genetically diverse P. falciparum
    corecore