106 research outputs found
The order of the quantum chromodynamics transition predicted by the standard model of particle physics
We determine the nature of the QCD transition using lattice calculations for
physical quark masses. Susceptibilities are extrapolated to vanishing lattice
spacing for three physical volumes, the smallest and largest of which differ by
a factor of five. This ensures that a true transition should result in a
dramatic increase of the susceptibilities.No such behaviour is observed: our
finite-size scaling analysis shows that the finite-temperature QCD transition
in the hot early Universe was not a real phase transition, but an analytic
crossover (involving a rapid change, as opposed to a jump, as the temperature
varied). As such, it will be difficult to find experimental evidence of this
transition from astronomical observations.Comment: 7 pages, 4 figure
Simulations of “tunnelling of the 3rd kind”
We consider the phenomenon of ``tunnelling of the 3rd kind" \cite{third}, whereby a magnetic field may traverse a classically impenetrable barrier by pair creation of unimpeded quantum fermions. These propagate through the barrier and generate a magnetic field on the other side. We study this numerically using quantum fermions coupled to a classical Higgs-gauge system, where we set up a magnetic field outside a box shielded by two superconducting barriers. We examine the magnitude of the internal magnetic field, and find agreement with existing perturbative results within a factor of two
Gauge invariant definition of the jet quenching parameter
In the framework of Soft-Collinear Effective Theory, the jet quenching
parameter, , has been evaluated by adding the effect of Glauber gluon
interactions to the propagation of a highly-energetic collinear parton in a
medium. The result, which holds in covariant gauges, has been expressed in
terms of the expectation value of two Wilson lines stretching along the
direction of the four-momentum of the parton. In this paper, we show how that
expression can be generalized to an arbitrary gauge by the addition of
transverse Wilson lines. The transverse Wilson lines are explicitly computed by
resumming interactions of the parton with Glauber gluons that appear only in
non-covariant gauges. As an application of our result, we discuss the
contribution to coming from transverse momenta of order in a
medium that is a weakly-coupled quark-gluon plasma.Comment: 31 pages, 7 figures; journal versio
Thermodynamics and Instabilities of a Strongly Coupled Anisotropic Plasma
We extend our analysis of a IIB supergravity solution dual to a spatially
anisotropic finite-temperature N=4 super Yang-Mills plasma. The solution is
static, possesses an anisotropic horizon, and is completely regular. The full
geometry can be viewed as a renormalization group flow from an AdS geometry in
the ultraviolet to a Lifshitz-like geometry in the infrared. The anisotropy can
be equivalently understood as resulting from a position-dependent theta-term or
from a non-zero number density of dissolved D7-branes. The holographic stress
tensor is conserved and anisotropic. The presence of a conformal anomaly plays
an important role in the thermodynamics. The phase diagram exhibits homogeneous
and inhomogeneous (i.e. mixed) phases. In some regions the homogeneous phase
displays instabilities reminiscent of those of weakly coupled plasmas. We
comment on similarities with QCD at finite baryon density and with the
phenomenon of cavitation.Comment: 62 pages, 13 figures; v2: typos fixed, added reference
Hsp-27 expression at diagnosis predicts poor clinical outcome in prostate cancer independent of ETS-gene rearrangement
BACKGROUND: This study was performed to test the hypothesis that expression of small heat shock protein Hsp-27 is, at diagnosis, a reliable predictive biomarker of clinically aggressive prostate cancer. METHODS: A panel of tissue microarrays constructed from a well-characterised cohort of 553 men with conservatively managed prostate cancer was stained immunohistochemically to detect Hsp-27 protein. Hsp-27 expression was compared with a series of pathological and clinical parameters, including outcome. RESULTS: Hsp-27 staining was indicative of higher Gleason score (P7, the presence of Hsp-27 retained its power to independently predict poor clinical outcome (P<0.002). Higher levels of Hsp-27 staining were almost entirely restricted to cancers lacking ERG rearrangements (chi2 trend=31.4, P<0.001), although this distribution did not have prognostic significance. INTERPRETATION: This study has confirmed that, in prostate cancers managed conservatively over a period of more than 15 years, expression of Hsp-27 is an accurate and independent predictive biomarker of aggressive disease with poor clinical outcome (P<0.001). These findings suggest that apoptotic and cell-migration pathways modulated by Hsp-27 may contain targets susceptible to the development of biologically appropriate chemotherapeutic agents that are likely to prove effective in treating aggressive prostate cancers
DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton
Dimethylsulfoniopropionate (DMSP) is a globally important organosulfur molecule and the major precursor for dimethyl sulfide. These compounds are important info-chemicals, key nutrients for marine microorganisms, and are involved in global sulfur cycling, atmospheric chemistry and cloud formation1,2,3. DMSP production was thought to be confined to eukaryotes, but heterotrophic bacteria can also produce DMSP through the pathway used by most phytoplankton4, and the DsyB enzyme catalysing the key step of this pathway in bacteria was recently identified5. However, eukaryotic phytoplankton probably produce most of Earth’s DMSP, yet no DMSP biosynthesis genes have been identified in any such organisms. Here we identify functional dsyB homologues, termed DSYB, in many phytoplankton and corals. DSYB is a methylthiohydroxybutryate methyltransferase enzyme localized in the chloroplasts and mitochondria of the haptophyte Prymnesium parvum, and stable isotope tracking experiments support these organelles as sites of DMSP synthesis. DSYB transcription levels increased with DMSP concentrations in different phytoplankton and were indicative of intracellular DMSP. Identification of the eukaryotic DSYB sequences, along with bacterial dsyB, provides the first molecular tools to predict the relative contributions of eukaryotes and prokaryotes to global DMSP production. Furthermore, evolutionary analysis suggests that eukaryotic DSYB originated in bacteria and was passed to eukaryotes early in their evolution
Cancer recurrence times from a branching process model
As cancer advances, cells often spread from the primary tumor to other parts
of the body and form metastases. This is the main cause of cancer related
mortality. Here we investigate a conceptually simple model of metastasis
formation where metastatic lesions are initiated at a rate which depends on the
size of the primary tumor. The evolution of each metastasis is described as an
independent branching process. We assume that the primary tumor is resected at
a given size and study the earliest time at which any metastasis reaches a
minimal detectable size. The parameters of our model are estimated
independently for breast, colorectal, headneck, lung and prostate cancers. We
use these estimates to compare predictions from our model with values reported
in clinical literature. For some cancer types, we find a remarkably wide range
of resection sizes such that metastases are very likely to be present, but none
of them are detectable. Our model predicts that only very early resections can
prevent recurrence, and that small delays in the time of surgery can
significantly increase the recurrence probability.Comment: 26 pages, 9 figures, 4 table
- …