218 research outputs found

    Unintentional boron incorporation in AlGaN layers grown by plasma-assisted MBE using highly efficient nitrogen RF plasma-sources

    Get PDF
    Plasma-assisted molecular beam epitaxy (PA-MBE) is now widely used for the growth of group III-nitrides. Many years ago it became clear that during PA-MBE there is unintentional doping of GaN with boron (B) due to decomposition of the pyrolytic boron nitride (PBN) cavity of the RF plasma source. In this paper we discuss the unintentional B incorporation for PA-MBE growth of GaN and AlxGa1βˆ’xN using a highly efficient RF plasma source. We have studied a wide range of MBE growth conditions for GaN and AlxGa1βˆ’xN with growth rates from 0.2 to 3 Β΅m/h, RF powers from 200 to 500 W, different nitrogen flow rates from 1 to 25 sccm and growth times up to several days. The chemical concentrations of B and matrix elements of Al, Ga, N were studied as a functions of depth using secondary ion mass spectrometry (SIMS). We demonstrate that boron incorporation with this highly efficient RF plasma source is approximately 1Γ—1018 to 3Γ—1018 cmβˆ’3 for the AlxGa1βˆ’xN growth rates of 2 – 3 Β΅m/h

    Growth of free-standing bulk wurtzite AlxGa1βˆ’xN layers by molecular beam epitaxy using a highly efficient RF plasma source

    Get PDF
    The recent development of group III nitrides allows researchers world-wide to consider AlGaN based light emitting diodes as a possible new alternative deep ultra–violet light source for surface decontamination and water purification. In this paper we will describe our recent results on plasma-assisted molecular beam epitaxy (PA-MBE) growth of free-standing wurtzite AlxGa1βˆ’xN bulk crystals using the latest model of Riber's highly efficient nitrogen RF plasma source. We have achieved AlGaN growth rates up to 3 Β΅m/h. Wurtzite AlxGa1βˆ’xN layers with thicknesses up to 100 ΞΌm were successfully grown by PA-MBE on 2-inch and 3-inch GaAs (111)B substrates. After growth the GaAs was subsequently removed using a chemical etch to achieve free-standing AlxGa1βˆ’xN wafers. Free-standing bulk AlxGa1βˆ’xN wafers with thicknesses in the range 30–100 ΞΌm may be used as substrates for further growth of AlxGa1βˆ’xN-based structures and devices. High Resolution Scanning Transmission Electron Microscopy (HR-STEM) and Convergent Beam Electron Diffraction (CBED) were employed for detailed structural analysis of AlGaN/GaAs (111)B interface and allowed us to determine the N-polarity of AlGaN layers grown on GaAs (111)B substrates. The novel, high efficiency RF plasma source allowed us to achieve free-standing AlxGa1βˆ’xN layers in a single day's growth, making this a commercially viable process

    X-ray Diffraction Analysis of the Chromium-containing Electroerosion Powders of Micro - and Nanoparticles

    Get PDF
    Presents the results of a study of x-ray analysis of the powder obtained by electro erosion dispersing of waste nichrome H15N60 brand in kerosene lighting. The major phases in Nickel-chromium powder obtained by electroerosion dispersion method in kerosene lighting are Ni and Si2O

    Molecular beam epitaxy as a growth technique for achieving free-standing zinc-blende GaN and wurtzite AlxGa1-xN

    Get PDF
    Currently there is a high level of interest in the development of ultraviolet (UV) light sources for solid state lighting, optical sensors, surface decontamination and water purification. III-V semiconductor UV LEDs are now successfully manufactured using the AlGaN material system; however, their efficiency is still low. The majority of UV LEDs require AlxGa1-xN layers with compositions in the mid-range between AlN and GaN. Because there is a significant difference in the lattice parameters of GaN and AlN, AlxGa1-xN substrates would be preferable to those of either GaN or AlN for many ultraviolet device applications. However, the growth of AlxGa1-xN bulk crystals by any standard bulk growth techniques has not been developed so far. There are very strong electric polarization fields inside the wurtzite (hexagonal) group III-nitride structures. The charge separation within quantum wells leads to a significant reduction in the efficiency of optoelectronic device structures. Therefore, the growth of non-polar and semi-polar group III-nitride structures has been the subject of considerable interest recently. A direct way to eliminate polarization effects is to use non-polar (001) zinc-blende (cubic) III-nitride layers. However, attempts to grow zinc-blende GaN bulk crystals by anystandard bulk growth techniques were not successful. Molecular beam epitaxy (MBE) is normally regarded as an epitaxial technique for the growth of very thin layers with monolayer control of their thickness. In this study we have used plasma-assisted molecular beam epitaxy (PA MBE) and have produced for the first time free-standing layers of zinc-blende GaN up to 100 ΞΌm in thickness and up to 3-inch in diameter. We have shown that our newly developed PA-MBE process for the growth of zinc-blende GaN layers can also be used to achieve free-standing wurtzite AlxGa1-xN wafers. Zinc-blende and wurtzite AlxGa1-xN polytypes can be grown on different orientations of GaAs substrates - (001) and (111)B respectively. We have subsequently removed the GaAs using a chemical etch in order to produce free-standing GaN and AlxGa1-xN wafers. At a thickness of ∼30 ΞΌm, free-standing GaN and AlxGa1-xN wafers can easily be handled without cracking. Therefore, free-standing GaN and AlxGa1-xN wafers with thicknesses in the 30–100 ΞΌm range may be used as substrates for further growth of GaN and AlxGa1 xN-based structures and devices. We have compared different RF nitrogen plasma sources for the growth of thick nitride AlxGa1-xN films including a standard HD25 source from Oxford Applied Research and a novel high efficiency source from Riber. We have investigated a wide range of the growth rates from 0.2 to 3 ΞΌm/h. The use of highly efficient nitrogen RF plasma sources makes PA-MBE a potentially viable commercial process, since free-standing films can be achieved in a single day. Our results have demonstrated that MBE may be competitive with the other group III-nitrides bulk growth techniques in several important areas including production of free-standing zinc-blende (cubic) (Al)GaN and of free-standing wurtzite (hexagonal) AlGaN

    Molecular beam epitaxy of highly mismatched N-rich GaNSb and InNAs alloys

    Get PDF
    GaN materials alloyed with group V anions form the so-called highly mismatched alloys (HMAs). Recently, the authors succeeded in growing N-rich GaNAs and GaNBi alloys over a large composition range by plasma-assisted molecular beam epitaxy (PA-MBE). Here, they present first results on PA-MBE growth and properties of N-rich GaNSb and InNAs alloys and compare these with GaNAs and GaNBi alloys. The enhanced incorporation of As and Sb was achieved by growing the layers at extremely low growth temperatures. Although layers become amorphous for high As, Sb, and Bi content, optical absorption measurements show a progressive shift of the optical absorption edge to lower energy. The large band gap range and controllable conduction and valence band positions of these HMAs make them promising materials for efficient solar energy conversion devices

    Π‘Π«Π’ΠžΠ ΠžΠ’ΠžΠ§ΠΠžΠ• Π‘ΠžΠ”Π•Π Π–ΠΠΠ˜Π• Π ΠΠ‘Π’Π’ΠžΠ Π˜ΠœΠ«Π₯ ΠœΠžΠ›Π•ΠšΠ£Π› CD25 И CD95 Π£ ΠžΠ–ΠžΠ“ΠžΠ’Π«Π₯ Π‘ΠžΠ›Π¬ΠΠ«Π₯

    Get PDF
    Background: Burn injury is accompanied by modulation of the many components of immunity, including the system regulation, which includes soluble forms of leukocyte differentiation molecules. Earlier in burn patients, we detected changes in serum levels of soluble differentiation molecules CD25 (sCD25) and CD95 (sCD25). Despite the existence of data on change of serum level of the soluble molecules CD25 and CD95 in the blood of patients with a burn trauma, there are no data on particular cell producers.Aims: To conduct the analysis of serum level of the molecules sCD25 and sCD95 in the blood of patients with acute burn trauma in comparison with peripheral blood cells composition to obtain data on the types of cells that produce the molecules sCD25 and sCD95.Materials and methods: Blood samples from 24 heavily burnt patients aged 16 to 77 years were studied. Determination of sCD25 and sCD95 molecules serum levels was performed by ELISA. Number of CD45+CD25+ lymphocytes, CD45+CD95+ cells, CD14+CD95+ monocytes, CD16b+CD95+ neutrophils, and RFMI (relative mean fluorescence intensity) was evaluated by flow cytometry.Results: In the first five days of the date of burn sCD25 and sCD95 serum levels tended to increase. sCD25 molecules contents in the blood of surviving and dead patients did not depend on the relative content of CD45+CD25+ lymphocytes, RFMI index, but correlated with the absolute level of lymphocytes and leukocytes. Serum levels of sCD95 molecules showed the dependence on the absolute neutrophil count and leukocytes in the survivors and on the absolute content of lymphocytes, neutrophils, and leukocytes in patients who died.Conclusions: The findings suggest that the lymphocytes in the early period of burn disease are the main cells-producers of sCD25 and affect the increase of its content in the blood serum not due to changes in the density of CD25 molecules expression on their membrane followed by increased shedding but by increasing the number of CD25 positive cells. The main cells-producers of sCD95 molecules for survivors in the early period of burn disease are likely to be the neutrophils and lymphocytes; in the dead patients, the main producers are neutrophils.ОбоснованиС. ОТоговая Ρ‚Ρ€Π°Π²ΠΌΠ° сопровоТдаСтся модуляциСй ΠΌΠ½ΠΎΠ³ΠΈΡ… звСньСв ΠΈΠΌΠΌΡƒΠ½ΠΈΡ‚Π΅Ρ‚Π°, Π² Ρ‚ΠΎΠΌ числС систСмой рСгуляции, Π² состав ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ входят растворимыС Ρ„ΠΎΡ€ΠΌΡ‹ Π»Π΅ΠΉΠΊΠΎΡ†ΠΈΡ‚Π°Ρ€Π½Ρ‹Ρ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΎΡ‡Π½Ρ‹Ρ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ». Π Π°Π½Π΅Π΅ Ρƒ ΠΎΠΆΠΎΠ³ΠΎΠ²Ρ‹Ρ… Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π±Ρ‹Π»ΠΈ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Ρ‹ измСнСния Π² сывороточном содСрТании растворимых Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΎΡ‡Π½Ρ‹Ρ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» CD25 (sCD25) ΠΈ CD95 (sCD25). НСсмотря Π½Π° Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Π΄Π°Π½Π½Ρ‹Ρ… ΠΎΠ± ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ сывороточного содСрТания растворимых ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» CD25 ΠΈ CD95 Π² ΠΊΡ€ΠΎΠ²ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с ΠΎΠΆΠΎΠ³ΠΎΠ²ΠΎΠΉ Ρ‚Ρ€Π°Π²ΠΌΠΎΠΉ, ΠΎΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ Ρ‚ΠΎΠΌ, ΠΊΠ°ΠΊΠΈΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ ΠΎΠ½ΠΈ ΠΏΡ€ΠΎΠ΄ΡƒΡ†ΠΈΡ€ΡƒΡŽΡ‚ΡΡ.ЦСль исслСдования β€” провСсти Π°Π½Π°Π»ΠΈΠ· сывороточного уровня ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» sCD25 ΠΈ sCD95 Π² ΠΊΡ€ΠΎΠ²ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π² остром ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π΅ ΠΎΠΆΠΎΠ³ΠΎΠ²ΠΎΠΉ Ρ‚Ρ€Π°Π²ΠΌΡ‹ Π² сопоставлСнии с популяционным составом ΠΊΠ»Π΅Ρ‚ΠΎΠΊ пСрифСричСской ΠΊΡ€ΠΎΠ²ΠΈ с Ρ†Π΅Π»ΡŒΡŽ получСния Π΄Π°Π½Π½Ρ‹Ρ… ΠΎ Ρ‚ΠΈΠΏΠ°Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, ΠΏΡ€ΠΎΠ΄ΡƒΡ†ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹ sCD25 ΠΈ sCD95.ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ‹ ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ ΠΊΡ€ΠΎΠ²ΠΈ 24 тяТСло ΠΎΠ±ΠΎΠΆΠΆΠ΅Π½Π½Ρ‹Ρ… ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π² возрастС ΠΎΡ‚ 16 Π΄ΠΎ 77 Π»Π΅Ρ‚. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ сывороточного содСрТания ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» sCD25 ΠΈ sCD95 ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΈΠΌΠΌΡƒΠ½ΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ. ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ CD45+CD25+ Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ², CD45+CD95+ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, CD14+CD95+ ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ², CD16b+CD95+ Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»ΠΎΠ² ΠΈ RFMI (relative mean fluorescence intensity) ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΡ„Π»ΡƒΠΎΡ€ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π’ ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΡΡ‚ΡŒ суток ΠΎΡ‚ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° ΠΎΠΆΠΎΠ³Π° сывороточноС содСрТаниС sCD25 ΠΈ sCD95 ΠΈΠΌΠ΅Π»ΠΎ Ρ‚Π΅Π½Π΄Π΅Π½Ρ†ΠΈΡŽ ΠΊ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ. Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» sCD25 ΠΊΠ°ΠΊ Ρƒ Π²Ρ‹ΠΆΠΈΠ²ΡˆΠΈΡ…, Ρ‚Π°ΠΊ ΠΈ ΠΏΠΎΠ³ΠΈΠ±ΡˆΠΈΡ… Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π½Π΅ зависСло ΠΎΡ‚ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ содСрТания CD45+CD25+ Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ², индСкса RFMI, Π½ΠΎ ΠΊΠΎΡ€Ρ€Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π»ΠΎ с Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½Ρ‹ΠΌ содСрТаниСм Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΈ Π»Π΅ΠΉΠΊΠΎΡ†ΠΈΡ‚ΠΎΠ². Π‘Ρ‹Π²ΠΎΡ€ΠΎΡ‚ΠΎΡ‡Π½Ρ‹ΠΉ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» sCD95 ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ²Π°Π» Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΎΡ‚ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠ³ΠΎ содСрТания Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»ΠΎΠ² ΠΈ Π»Π΅ΠΉΠΊΠΎΡ†ΠΈΡ‚ΠΎΠ² Ρƒ Π²Ρ‹ΠΆΠΈΠ²ΡˆΠΈΡ… Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΈ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠ³ΠΎ содСрТания Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ², Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»ΠΎΠ² ΠΈ Π»Π΅ΠΉΠΊΠΎΡ†ΠΈΡ‚ΠΎΠ² β€” Ρƒ ΠΏΠΎΠ³ΠΈΠ±ΡˆΠΈΡ….Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Π·Π°ΠΊΠ»ΡŽΡ‡ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Ρ‹ Π² Ρ€Π°Π½Π½Π΅ΠΌ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π΅ ΠΎΠΆΠΎΠ³ΠΎΠ²ΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ основными ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ-ΠΏΡ€ΠΎΠ΄ΡƒΡ†Π΅Π½Ρ‚Π°ΠΌΠΈ sCD25 ΠΈ Π²Π»ΠΈΡΡŽΡ‚ Π½Π° ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ ΠΈΡ… содСрТания Π² сывороткС ΠΊΡ€ΠΎΠ²ΠΈ Π½Π΅ Π·Π° счСт измСнСния плотности экспрСссии Π½Π° ΠΈΡ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π΅ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» CD25 с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ усилСниСм шСддинга, Π° ΠΏΡƒΡ‚Π΅ΠΌ увСличСния количСства Π‘D25-ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. ΠžΡΠ½ΠΎΠ²Π½Ρ‹ΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ-ΠΏΡ€ΠΎΠ΄ΡƒΡ†Π΅Π½Ρ‚Π°ΠΌΠΈ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» sCD95 Ρƒ Π²Ρ‹ΠΆΠΈΠ²ΡˆΠΈΡ… Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π² Ρ€Π°Π½Π½Π΅ΠΌ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π΅ ΠΎΠΆΠΎΠ³ΠΎΠ²ΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΠΈ, вСроятно, ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»Ρ‹ ΠΈ Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Ρ‹, Ρƒ ΠΏΠΎΠ³ΠΈΠ±ΡˆΠΈΡ… β€” Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»Ρ‹.

    ВлияниС ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΏΠΎΡ‡Π²Ρ‹ ΠΈ ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ питания Π½Π° Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡƒ биологичСской активности ΠΈ NPK ΠΏΡ€ΠΈ Π²ΠΎΠ·Π΄Π΅Π»Ρ‹Π²Π°Π½ΠΈΠΈ ярового ячмСня

    Get PDF
    The use of scientifically based doses of fertilizers in the cultivation of crops does not lead to the removal of nutrients from the natural reserves of the organic and mineral soil by microflora. At the same time, the methods and terms for the introduction of mineral fertilizers must be linked with the technology of soil preparation and moisture supply. Nitrogen fertilizers, because of their rapid volati-lization, are recommended to be applied for pre-sowing cultivation with sealing in the surface layer, and phosphorous fertilizers, as inactive β€” along with the main soil treatment. In this connection, in studies of the significant influence of the methods of basic soil cultivation with and without application of nitrogen, its dynamics along layers are not revealed. Deep soil-free tillage allows significantly more accumulation and longer storage of moisture in the soil layers; In comparison with the classical plowing and dumping plowing and planing in a meter layer of soil, the additional moisture reserves before sowing the crop are respectively 300 and 230 m3 / ha, in the tubing phase β€” barley β€” 256 and 189 m3/ha, in the phase of milk ripeness β€” 270 And 128 m3/ha. Deficiency of moisture reduces the biological activity of the soil, in this regard, moisture-saving methods of basic soil cultivation are especially important in conditions of rain-fed farming, not only on the yield of agricultural crops, but also on the processes of humus formation. The total accumulation of amino acids in the half-meter layer in the variant with deep soil-free tillage before sowing barley was 424 ΞΌg amine / G of cloth, in the phase of tubing β€” ear β€” 400 ΞΌg amine / G canvas, in the phase of milk ripeness β€” 210 ΞΌg amine / G of canvas. The values obtained are higher in comparison with the control data and the variant with planar tillage at 7 and 18%, 48 and 32%, 10 and 36% respectively. Positive dynamics in terms of productive moisture and accumulation of amino acids in the variant with deep soil-free soil treatment, application of calculated phosphorus doses for main processing and nitrogen for pre-sowing cultivation, had an effect on a significant increase in grain relative to control at 0.4 t/ha, Processing β€” at 0.35 t/ha.ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π½Π°ΡƒΡ‡Π½ΠΎ обоснованных Π΄ΠΎΠ· ΡƒΠ΄ΠΎΠ±Ρ€Π΅Π½ΠΈΠΉ ΠΏΡ€ΠΈ Π²ΠΎΠ·Π΄Π΅Π»Ρ‹Π²Π°Π½ΠΈΠΈ ΡΠ΅Π»ΡŒΡΠΊΠΎΡ…ΠΎΠ·ΡΠΉΡΡ‚Π²Π΅Π½Π½Ρ‹Ρ… ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ Π½Π΅ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ выносу ΠΏΠΈΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… элСмСнтов ΠΈΠ· СстСствСнных запасов органичСской ΠΈ ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ части ΠΏΠΎΡ‡Π²Ρ‹ ΠΌΠΈΠΊΡ€ΠΎΡ„Π»ΠΎΡ€ΠΎΠΉ. ΠŸΡ€ΠΈ этом способы ΠΈ сроки внСсСния ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΠ΄ΠΎΠ±Ρ€Π΅Π½ΠΈΠΉ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΡƒΠ²ΡΠ·Ρ‹Π²Π°Ρ‚ΡŒ с Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ ΠΏΠΎΡ‡Π²Ρ‹ ΠΈ Π²Π»Π°Π³ΠΎΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ. Азот-Π½Ρ‹Π΅ удобрСния ΠΈΠ·-Π·Π° ΠΈΡ… быстрого улСтучивания рСкомСндуСтся Π²Π½ΠΎΡΠΈΡ‚ΡŒ ΠΏΠΎΠ΄ ΠΏΡ€Π΅Π΄ΠΏΠΎΡΠ΅Π²Π½ΡƒΡŽ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²Π°-Ρ†ΠΈΡŽ с Π·Π°Π΄Π΅Π»ΠΊΠΎΠΉ Π² повСрхностный слой, Π° фосфорныС, ΠΊΠ°ΠΊ ΠΌΠ°Π»ΠΎΠΏΠΎΠ΄Π²ΠΈΠΆΠ½Ρ‹Π΅ β€” вмСстС с основной ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΎΠΉ ΠΏΠΎΡ‡Π²Ρ‹. Π’ связи с этим Π² исслСдованиях сущСствСнного влияния способов основной ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΏΠΎΡ‡Π²Ρ‹ с внСсСниСм ΠΈ Π±Π΅Π· внСсСния Π°Π·ΠΎΡ‚Π° Π½Π° Π΅Π³ΠΎ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡƒ ΠΏΠΎ слоям Π½Π΅ выявлСно. Глубокая Π±Π΅Π·ΠΎΡ‚Π²Π°Π»ΡŒΠ½Π°Ρ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΏΠΎΡ‡Π²Ρ‹ позволяСт сущСствСнно большС Π½Π°ΠΊΠ°ΠΏΠ»ΠΈΠ²Π°Ρ‚ΡŒ ΠΈ дольшС ΡΠΎΡ…Ρ€Π°Π½ΡΡ‚ΡŒ Π²Π»Π°Π³Ρƒ Π² ΠΏΠΎΡ‡Π²Π΅Π½Π½Ρ‹Ρ… слоях; Π² сравнСнии с классичСской лСмСшно-ΠΎΡ‚Π²Π°Π»ΡŒΠ½ΠΎΠΉ вспашкой ΠΈ плоскорСзной ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΎΠΉ Π² ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠΌ слоС ΠΏΠΎΡ‡Π²Ρ‹ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ запасы Π²Π»Π°Π³ΠΈ ΠΏΠ΅Ρ€Π΅Π΄ посСвом ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ составля-ΡŽΡ‚ соотвСтствСнно 300 ΠΈ 230 ΠΌ3/Π³Π°, Π² Ρ„Π°Π·Ρƒ Ρ‚Ρ€ΡƒΠ±ΠΊΠΎΠ²Π°Π½ΠΈΠ΅ β€” колошСниС ячмСня β€” 256 ΠΈ 189 ΠΌ3/Π³Π°, Π² Ρ„Π°Π·Ρƒ ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ спСлости β€” 270 ΠΈ 128 ΠΌ3/Π³Π°. Π”Π΅Ρ„ΠΈΡ†ΠΈΡ‚ Π²Π»Π°Π³ΠΈ сниТаСт Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎΡ‡Π²Ρ‹, Π² связи с этим Π²Π»Π°Π³ΠΎΡΠ±Π΅Ρ€Π΅Π³Π°ΡŽΡ‰ΠΈΠ΅ способы основной ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΏΠΎΡ‡Π²Ρ‹ ΠΈΠΌΠ΅ΡŽΡ‚ особСнно большоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π² условиях Π½Π΅ΠΎΡ€ΠΎΡˆΠ°Π΅ΠΌΠΎΠ³ΠΎ зСмлСдСлия Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π° ΡƒΡ€ΠΎΠΆΠ°ΠΉΠ½ΠΎΡΡ‚ΡŒ ΡΠ΅Π»ΡŒΡΠΊΠΎΡ…ΠΎΠ·ΡΠΉΡΡ‚-Π²Π΅Π½Π½Ρ‹Ρ… ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€, Π½ΠΎ ΠΈ Π½Π° процСссы гумусообразования. Π‘ΡƒΠΌΠΌΠ°Ρ€Π½ΠΎΠ΅ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ аминокислот Π² ΠΏΠΎΠ»Ρƒ-ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠΌ слоС Π² Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π΅ с Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠΉ Π±Π΅Π·ΠΎΡ‚Π²Π°Π»ΡŒΠ½ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΎΠΉ ΠΏΠΎΡ‡Π²Ρ‹ ΠΏΠ΅Ρ€Π΅Π΄ посСвом ячмСня состав-ляло 424 ΠΌΠΊΠ³ Π°ΠΌΠΈΠ½. / Π³ ΠΏΠΎΠ»ΠΎΡ‚Π½Π°, Π² Ρ„Π°Π·Ρƒ Ρ‚Ρ€ΡƒΠ±ΠΊΠΎΠ²Π°Π½ΠΈΠ΅ β€” колошСниС β€” 400 ΠΌΠΊΠ³ Π°ΠΌΠΈΠ½. / Π³ ΠΏΠΎΠ»ΠΎΡ‚Π½Π°, Π² Ρ„Π°Π·Ρƒ ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ спСлости β€” 210 ΠΌΠΊΠ³ Π°ΠΌΠΈΠ½. / Π³ ΠΏΠΎΠ»ΠΎΡ‚Π½Π°. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ значСния Π²Ρ‹ΡˆΠ΅ Π² сравнСнии с Π΄Π°Π½Π½Ρ‹ΠΌΠΈ ΠΏΠΎ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŽ ΠΈ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρƒ с плоскорСзной ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΎΠΉ ΠΏΠΎΡ‡Π²Ρ‹ Π½Π° 7 ΠΈ 18%, 48 ΠΈ 32%, 10 ΠΈ 36% соотвСтст-Π²Π΅Π½Π½ΠΎ. ΠŸΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° ΠΏΠΎ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ Π²Π»Π°Π³Π΅ ΠΈ накоплСнию аминокислот Π² Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π΅ с Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠΉ Π±Π΅Π·ΠΎΡ‚Π²Π°Π»ΡŒΠ½ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΎΠΉ ΠΏΠΎΡ‡Π²Ρ‹, внСсСниСм расчСтных Π΄ΠΎΠ· фосфора ΠΏΠΎΠ΄ ΠΎΡΠ½ΠΎΠ²Π½ΡƒΡŽ ΠΎΠ±Ρ€Π°-Π±ΠΎΡ‚ΠΊΡƒ ΠΈ Π°Π·ΠΎΡ‚Π° ΠΏΠΎΠ΄ ΠΏΡ€Π΅Π΄ΠΏΠΎΡΠ΅Π²Π½ΡƒΡŽ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²Π°Ρ†ΠΈΡŽ подСйствовала Π½Π° ΡΡƒΡ‰Π΅ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ ΠΏΡ€ΠΈΠ±Π°Π²ΠΊΡƒ Π·Π΅Ρ€Π½Π° ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŽ Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ 0,4 Ρ‚/Π³Π°, Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρƒ с ΠΌΠ΅Π»ΠΊΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΎΠΉ β€” Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ 0,35 Ρ‚/Π³Π°

    ΠžΡ†Π΅Π½ΠΊΠ° динамичСской ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π”Π’Π‘

    Get PDF
    Briefly the technique of assessing the impact of transient modes for comprehensive indicators on the toxicity of diesel or fuel efficiency, with respect to the NRTC test cycle for off-road equipment.ΠšΡ€Π°Ρ‚ΠΊΠΎ рассмотрСна ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΎΡ†Π΅Π½ΠΊΠΈ влияния Π½Π΅ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠΈΡ…ΡΡ Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π½Π° ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ дизСля ΠΏΠΎ токсичности ΠΈΠ»ΠΈ Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π½ΠΎΠΉ экономичности, ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΊ Π΅Π·Π΄ΠΎΠ²ΠΎΠΌΡƒ Ρ†ΠΈΠΊΠ»Ρƒ NRTC для Π²Π½Π΅Π΄ΠΎΡ€ΠΎΠΆΠ½ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ

    Electroerosive Powder Obtained from Alloy VK8 Waste into Butanol

    Get PDF
    The results of studies of the properties of the powders obtained by electroerosive dispersing of the hard alloy wastes of mark VK8 in butanol. It is found that the powder particles obtained by electroerosive dispersing of waste carbide grade VK8 in butyl alcohol, consist of the following major elements: W, Co, Fe, C and O
    • …
    corecore