330 research outputs found

    Peroxisome proliferator-activated receptor -ÎČ/ÎŽ, -Îł Agonists and resveratrol modulate hypoxia induced changes in nuclear receptor activators of muscle oxidative metabolism

    Get PDF
    PPAR-α, PPAR-ÎČ, and PPAR-Îł, and RXR in conjunction with PGC-1α and SIRT1, activate oxidative metabolism genes determining insulin sensitivity. In utero, hypoxia is commonly observed in Intrauterine Growth Restriction (IUGR), and reduced insulin sensitivity is often observed in these infants as adults. We sought to investigate how changes in oxygen tension might directly impact muscle PPAR regulation of oxidative genes. Following eight days in culture at 1 oxygen, C2C12 muscle myoblasts displayed a reduction of PGC-1α, PPAR-α, and RXR-α mRNA, as well as CPT-1b and UCP-2 mRNA. SIRT1 and PGC-1α protein was reduced, and PPAR-Îł protein increased. The addition of a PPAR-ÎČ agonist (L165,041) for the final 24 hours of 1 treatment resulted in increased levels of UCP-2 mRNA and protein whereas Rosiglitazone induced SIRT1, PGC-1α, RXR-α, PPAR-Îł, CPT-1b, and UCP-2 mRNA and SIRT1 protein. Under hypoxia, Resveratrol induced SIRT1, RXR-, PPAR- mRNA, and PPAR- and UCP-2 protein. These findings demonstrate that hypoxia alters the components of the PPAR pathway involved in muscle fatty acid oxidative gene transcription and translation. These results have implications for understanding selective hypoxia adaptation and how it might impact long-term muscle oxidative metabolism and insulin sensitivity. Copyright © 2010 Timothy R. H. Regnault et al

    Observables from a solution of 1+3 dimensional relativistic hydrodynamics

    Get PDF
    In this paper we analyze a 1+3 dimensional solution of relativistic hydrodynamics. We calculate momentum distribution and other observables from the solution and compare them to measurements from the Relativistic Heavy Ion Collider (RHIC). We find that the solution we analyze is compatible with the data. In the last several years many numerical models were tested, but it is the first time that an exact, parametric, 1+3 dimensional relativistic solution is compared to data.Comment: 6 pages, 6 figures. Published in EPJ A. This work was supported by the OTKA grant NK73143 and M. Csanad's Bolyai scholarshi

    Longitudinal broadening of near side jets due to parton cascade

    Full text link
    Longitudinal broadening along Δη\Delta\eta direction on near side in two-dimensional (Î”Ï•Ă—Î”Î·\Delta\phi \times \Delta\eta) di-hadron correlation distribution has been studied for central Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV, within a dynamical multi-phase transport model. It was found that the longitudinal broadening is generated by a longitudinal flow induced by strong parton cascade in central Au+Au collisions, in comparison with p+p collisions at sNN\sqrt{s_{NN}} = 200 GeV. The longitudinal broadening may shed light on the information about strongly interacting partonic matter at RHIC.Comment: 5 pages, 4 figures; accepted by Eur. Phys. J.

    Gravitational anomalies signaling the breakdown of classical gravity

    Full text link
    Recent observations for three types of astrophysical systems severely challenge the GR plus dark matter scenario, showing a phenomenology which is what modified gravity theories predict. Stellar kinematics in the outskirts of globular clusters show the appearance of MOND type dynamics on crossing the a0a_{0} threshold. Analysis shows a ``Tully-Fisher'' relation in these systems, a scaling of dispersion velocities with the fourth root of their masses. Secondly, an anomaly has been found at the unexpected scales of wide binaries in the solar neighbourhood. Binary orbital velocities cease to fall along Keplerian expectations, and settle at a constant value, exactly on crossing the a0a_{0} threshold. Finally, the inferred infall velocity of the bullet cluster is inconsistent with the standard cosmological scenario, where much smaller limit encounter velocities appear. This stems from the escape velocity limit present in standard gravity; the ``bullet'' should not hit the ``target'' at more than the escape velocity of the joint system, as it very clearly did. These results are consistent with extended gravity, but would require rather contrived explanations under GR, each. Thus, observations now put us in a situation where modifications to gravity at low acceleration scales cease to be a matter of choice, to now become inevitable.Comment: 10 pages, 5 figures, Astrophysics and Space Science Proceedings 38, 4

    Time Evolution of Unstable Particle Decay Seen with Finite Resolution

    Get PDF
    Time evolution of the decay process of unstable particles is investigated in field theory models. We first formulate how to renormalize the non-decay amplitude beyond perturbation theory and then discuss short-time behavior of very long-lived particles. Two different formalisms, one that does and one that does not, assume existence of the asymptotic field of unstable particles are considered. The non-decay amplitude is then calculated by introducing a finite time resolution of measurement, which makes it possible to discuss both renormalizable and non-renormalizable decay interaction including the nucleon decay. In ordinary circumstances the onset of the exponential decay law starts at times as early as at roughly the resolution time, but with an enhanced amplitude which may be measurable. It is confirmed that the short-time formula 1−Γt1 - \Gamma t of the exponential decay law may be used to set limits on the nucleon decay rate in underground experiments. On the other hand, an exceptional example of S-wave decay of very small Q-value is found, which does not have the exponential period at all.Comment: 26 pages, LATEX file with 8 PS figure

    Wide binaries as a critical test of Classical Gravity

    Full text link
    Modified gravity scenarios where a change of regime appears at acceleration scales a<a0a<a_{0} have been proposed. Since for 1M⊙1 M_{\odot} systems the acceleration drops below a0a_{0} at scales of around 7000 AU, a statistical survey of wide binaries with relative velocities and separations reaching 10410^{4} AU and beyond should prove useful to the above debate. We apply the proposed test to the best currently available data. Results show a constant upper limit to the relative velocities in wide binaries which is independent of separation for over three orders of magnitude, in analogy with galactic flat rotation curves in the same a<a0a<a_{0} acceleration regime. Our results are suggestive of a breakdown of Kepler's third law beyond a≈a0a \approx a_{0} scales, in accordance with generic predictions of modified gravity theories designed not to require any dark matter at galactic scales and beyond.Comment: accepted for publication in EPJ

    Event Reconstruction in the PHENIX Central Arm Spectrometers

    Full text link
    The central arm spectrometers for the PHENIX experiment at the Relativistic Heavy Ion Collider have been designed for the optimization of particle identification in relativistic heavy ion collisions. The spectrometers present a challenging environment for event reconstruction due to a very high track multiplicity in a complicated, focusing, magnetic field. In order to meet this challenge, nine distinct detector types are integrated for charged particle tracking, momentum reconstruction, and particle identification. The techniques which have been developed for the task of event reconstruction are described.Comment: Accepted for publication in Nucl. Instrum. A. 34 pages, 23 figure

    Fine structure in the azimuthal transverse momentum correlations at sNN=200\sqrt{s_{NN}}=200 GeV using the event shape analysis

    Full text link
    The experimental results on transverse momentum azimuthal hadron correlations at RHIC have opened a rich field for parton energy loss analysis in heavy-ion collisions. Recently, a considerable amount of work has beendevoted to study the shapes of the ``away-side'' jet which exhibit an interesting and unexpected ``double hump'' structure not observed in the analogous treatment of pppp data. Driven by the possibility that the latter result might just mean that such structure exists already in the case of pppp collisions, but that its relative intensity could be small, here we use the Event Shape Analysis to show that it is possible to identify and select well defined event topologies in pppp collisions, among which, a double hump structure for the away-side jet emerges. Using two shape parameters, the sphericity in the transverse plane and the recoil to analyze a sample of PYTHIA generated pppp collisions at sNN=200\sqrt{s_{NN}}=200 GeV, we show that this structure corresponds to two jets emitted in the backward hemisphere. Finally, we show that Q-PYTHIA qualitatively reproduces the decrease in the yield of dijet events and the increase of the double hump structure in the away side observed in heavy ion collisions. The implications for the treatment of parton energy loss in heavy-ion collisions are discussedComment: 6 pages, 7 fugures: One figure was changed, references were added. This version will appear in Eur. Phys. J.

    Hamiltonian Description of Composite Fermions: Magnetoexciton Dispersions

    Full text link
    A microscopic Hamiltonian theory of the FQHE, developed by Shankar and myself based on the fermionic Chern-Simons approach, has recently been quite successful in calculating gaps in Fractional Quantum Hall states, and in predicting approximate scaling relations between the gaps of different fractions. I now apply this formalism towards computing magnetoexciton dispersions (including spin-flip dispersions) in the Μ=1/3\nu=1/3, 2/5, and 3/7 gapped fractions, and find approximate agreement with numerical results. I also analyse the evolution of these dispersions with increasing sample thickness, modelled by a potential soft at high momenta. New results are obtained for instabilities as a function of thickness for 2/5 and 3/7, and it is shown that the spin-polarized 2/5 state, in contrast to the spin-polarized 1/3 state, cannot be described as a simple quantum ferromagnet.Comment: 18 pages, 18 encapsulated ps figure

    Precise Measurements of Beam Spin Asymmetries in Semi-Inclusive π0\pi^0 production

    Get PDF
    We present studies of single-spin asymmetries for neutral pion electroproduction in semi-inclusive deep-inelastic scattering of 5.776 GeV polarized electrons from an unpolarized hydrogen target, using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. A substantial sinâĄÏ•h\sin \phi_h amplitude has been measured in the distribution of the cross section asymmetry as a function of the azimuthal angle ϕh\phi_h of the produced neutral pion. The dependence of this amplitude on Bjorken xx and on the pion transverse momentum is extracted with significantly higher precision than previous data and is compared to model calculations.Comment: to be submitted PL
    • 

    corecore