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Abstract In this paper we analyze a 1+3 dimensional solution of relativistic hydrodynamics. We calculate
momentum distribution and other observables from the solution and compare them to measurements from
the Relativistic Heavy Ion Collider (RHIC). We find that the solution we analyze is compatible with the
data. In the last several years many numerical models were tested, but it is the first time that an exact,
parametric, 1+3 dimensional relativistic solution is compared to data.
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1 Introduction

In the last several years it has been revealed that the mat-
ter produced in the collisions of the Relativistic Heavy Ion
Collider (RHIC) is a nearly perfect fluid [1], i.e. it can be
described with perfect fluid hydrodynamics. There was a
long search for exact hydrodynamic solutions (solutions of
the partial differential equations of hydrodynamics) and
several solutions proved to be applicable. There are 1+3
dimensional solutions, as well as relativistic solutions -
but no 1+3 dimensional and relativistic exact solution
has been tested yet. In this paper we extract observables
from the relativistic, ellipsoidally symmetric solution of
ref. [2]. We calculate momentum distribution, elliptic flow
and correlation radii and compare them to RHIC data.

2 Perfect fluid hydrodynamics

Perfect fluid hydrodynamics is based on local conservation
of entropy or number density (n), energy-momentum den-
sity (T µν), expressed by so-called conservation equations:

∂µ(nu
µ) = 0, (1)

∂µT
µν = 0, (2)

where uµ is the flow field in the fluid. The fluid is perfect if
the energy-momentum tensor is diagonal in the local rest
frame, i.e. viscosity and heat conduction are negligible.
This can be assured if T µν is chosen as

T µν = (ǫ+ p)uµuν − pgµν , (3)

where ǫ is energy density, p is pressure and gµν is the met-
ric tensor, diag(1,-1,-1,-1). The conservation equations are

closed by the equation of state, which gives the relation-
ship between ǫ and p. Typically ǫ = κp is chosen, where
the proportionality “constant” κ may depend on temper-
ature T , which is connected to the density n and pressure
p via p = nT . In some solutions (as also on the analyzed
one) a bag constant B can be introduced (this is not fa-
vored by the data, because no first order phase transition
is seen in high energy heavy ion collisions, these are in the
cross-over regime of the QCD phase-diagram [3]). The ex-
act, analytic result for hydrodynamic solutions is, that the
hadronic observables do not depend on the initial state or
the dynamical equations separately, just through the final
state [4]. Thus if we fix the final state from the data, the
equation of state can be anything that is compatible with
the particular solution. This is the framework of several
hydro solutions as detailed in the next paragraph.

Even though many solve the above equations numeri-
cally, there are only a few exact solutions for these equa-
tions. One (and historically the first) is the implicit so-
lution discovered more than 50 years ago by Landau and
Khalatnikov [5–7]. This is a 1+1 dimensional solution,
and has realistic properties: it describes a 1+1 dimen-
sional expansion, does not lack acceleration and predicts
an approximately Gaussian rapidity distribution. Another
renowned solution of relativistic hydrodynamics was found
by Hwa and Bjorken solution [8–10]: it is simple, 1+1 di-
mensional, explicit and exact, but accelerationless. It is
boost-invariant in its original form. Boost invariance is
however incompatible with data from RHIC, so the so-
lution fails to describe the data (it still can be used to
estimate the energy density in high energy heavy ion col-
lisions; note that this solution rather underestimating the
initial energy density, see ref [11]). Important are solu-
tions [11, 12] which are explicit and describe a relativistic
acceleration, i.e. combine the properties of the Landau-
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Khalatnikow and the Hwa-Bjorken solutions. With these
one can have an advanced estimate on the energy density,
but investigation of transverse dynamics is not possible by
these solutions.

There were no 1+3 dimensional relativistic exact para-
metric solutions investigated yet: the only exact solution
is the one in ref. [2]. Observables from this solution were
not computed and compared to data yet. Present paper
hence calculates observables from a realistic 1+3 dimen-
sional solution and compares them to data for the first
time. There were several numerical solutions of relativis-
tic hydrodynamics compared to data, but our method is
different from numerical calculations: here one can deter-
mine the best values of the parameters of the solution by
fitting the analytic results to data.

3 The analyzed solution

The analyzed solution [2] assumes self-similarity and ellip-
soidal symmetry. The ellipsoidal symmetry means that at
a given proper time the thermodynamical quantities are
constant on the surface of expanding ellipsoids. The ellip-
soids are given by constant values of the scale variable s,
defined as

s =
r2x

X(t)2
+

r2y
Y (t)2

+
r2z

Z(t)2
, (4)

where X(t), Y (t), and Z(t) are time dependent scale pa-
rameters (axes of the s = 1 ellipsoid), only depending on
the time t. Spatial coordinates are rx, ry , and rz . The
velocity-field is described by a Hubble-type expansion:

uµ(x) = γ

(
1,

Ẋ(t)

X(t)
rx,

Ẏ (t)

Y (t)
ry,

Ż(t)

Z(t)
rz

)
, (5)

where x means the four-vector (t, rx, ry, rz), and Ẋ(t) =

dX(t)/dt, similarly for Y and Z. The Ẋ(t) = Ẋ0, Ẏ (t) =

Ẏ0, Ż(t) = Ż0 (i.e. all are constant) criteria must be ful-
filled, ie. the solution is accelerationless. This is one of the
drawbacks of this solution.

The temperature T (x) and number density n(x) are:

n(x) = n0

(τ0
τ

)3
ν(s), (6)

T (x) = T0

(τ0
τ

)3/κ 1

ν(s)
, (7)

p(x) = p0

(τ0
τ

)3(κ+1)/κ

, (8)

where τ is the proper time, s is the above scaling vari-
able, ν(s) is an arbitrary function, while n0 = n|s=0,τ=τ0,
T0 = T |s=0,τ=τ0 and p0 = p|s=0,τ=τ0 with p0 = n0T0

(hence p does not depend on the spatial coordinates only
τ). Furthermore, τ0 is an arbitrary proper time, but prac-
tically we choose it to be the time of the freeze-out, thus
T0 is the central freeze-out temperature. Note that in our

solution, the parameter κ is arbitrary, i.e. any value of κ
yields a solution. The function ν(s) is chosen as:

ν(s) = e−bs/2, (9)

where b = ∆T
T

∣∣
r

is the temperature gradient. If the fireball
is the hottest in the center, then b < 0.

4 Freeze-out and source function

The picture widely used in hydro models is that the pre
freeze-out (FO) medium is described by hydrodynamics,
and the post FO medium is that of observed hadrons.
Note that cases have been analyzed where the pre and
post FO physical parameters are different, see refs. [13–15]
for details. In our framework we assume however that the
freeze-out can happen at any proper time, e.g in case of
a self-quenching effect or if the phase space evolution is
that of a collisionless gas. Thus there is no jump in the
equation of state post and pre FO, i.e. κ goes to κfree

smoothly, to the EoS of free hadrons. This is a widely
used assumption, the framework of our solution is similar
to that of refs. [11, 16, 17].

In this case the hadronic observables can be extracted
from the solution via the phase-space distribution at the
FO. This will correspond to the hadronic final state or
source distribution S(x, p).

As mentioned in the previous section, one does not
need to fix a special equation of state, because the same
final state can be achieved with different equations of state
or initial conditions [4]. Thus in this paper κ is arbitrary
– the hadronic observables do not restrict the value of κ.
The bag constant B does not have to be specified either,
but the instantaneous FO we assume corresponds to zero
bag constant.

In our solution the source distribution takes the fol-
lowing form:

S(x, p)d4x = NB(x, p)H(τ)dτd3Σµ(x)pµ, (10)

where N = g/(2π)3 (with g being the degeneracy factor),
H(τ) is the proper-time probability distribution of the
FO, B(x, p) is the Boltzmann-distribution and d3Σµ(x)p

µ

is the Cooper-Frye factor [18] describing the flux of the
particles, and d3Σµ(x) is the vector-measure of the FO
hyper-surface. We assume that the FO happens at a con-
stant proper time τ0, i.e. H(τ)dτ = δτ0(τ) and d3Σµ(x) =
uµd3x/u0, i.e. the FO hyper surface is assumed to be nor-
mal to uµ.

We assume for the Jüttner-distribution:

B(x, p) = exp

[
µ(x)− pµu

µ(x)

T (x)

]
= n(x) exp

[
−
pµu

µ(x)

T (x)

]
,

(11)

where µ(x)/T (x) = lnn(x) + µ0/T0 is the fugacity factor.
Finally the source distribution is:

S(x, p)d4x = Nn(x) exp

[
−
pµu

µ(x)

T (x)

]
pµu

µ

u0
δτ0(τ)dτd

3x.

(12)



Máté Csanád, Márton Vargyas: Observables from a solution of 1+3 dimensional relativistic hydrodynamics 3

Note that the source distribution is normalized such
as
∫
S(x, p)d4xd3p/E = N , i.e. one gets the total number

of particles N (using c=1, ~=1 units)

5 Observables from the solution

Now let us calculate the observables that are usually mea-
sured in high energy heavy ion collisions. The invariant
momentum distribution N1(p) can be calculated as:

E
d3N

d3p
= N1(p) =

∫
S(x, p)d4x. (13)

For the integration, we did a second order Gaussian
approximation. The result for the invariant momentum
distribution of a particle with mass m is:

N1(p) =

∫
S(x, p)d4x = 2πNEV (14)

× exp

[
−
E2 +m2

2ET0
−

p2x
2ETx

−
p2y

2ETy
−

p2z
2ETz

]
,

with the following auxiliary quantities:

N = Nn0

(
2T0τ

2
0π

E

)3/2

, (15)

E =

(
E −

p2x(1 −
T0

Tx
)

E
−

p2y(1−
T0

Ty
)

E
−

p2z(1 −
T0

Tz
)

E

)
,

(16)

V =

√(
1−

T0

Tx

)(
1−

T0

Ty

)(
1−

T0

Tz

)
. (17)

Furthermore, Tx ,Ty, Tz are the effective temperatures, i.e.
inverse logarithmic slopes of the distribution:

Tx = T0 +
ET0Ẋ

2
0

b(T0 − E)
, (18)

Ty = T0 +
ET0Ẏ

2
0

b(T0 − E)
, (19)

Tz = T0 +
ET0Ż

2
0

b(T0 − E)
, (20)

where Ẋ0, Ẏ0 and Ż0 are the (constant) expansion rates
of the fireball, T0 its central temperature at FO and b
the temperature gradient. There is an important criterion
for the validity of this calculation: Tx,y,z > T0 has to be
true. This is the case if b < 0 (i.e. the fireball is cooler
on the outside than in the inside) and E > T0. In case
of roughly 200 MeV central freeze-out temperature, this
yields p > 140MeV/c. We will see later, that this is true
for all the data points we use.

5.1 The transverse momentum distribution and the
elliptic flow

The invariant momentum distribution depends on all three
momentum coordinates. Here we take the longitudinal mo-
mentum to be zero, as the data we compare it to are mea-
sured at mid-rapidity. We use transverse polar coordinates
φ and pt instead of px = pt cos(φ) and py = pt sin(φ). This
way N1(p) can be rewritten as

N1(p) = N1(pt)

[
1 + 2

∞∑

n=1

vn cos(nφ)

]
, (21)

where vn are the flow coefficients, in particular v2 is the
elliptic flow. This way we may calculate the transverse
momentum distribution N1(pt) from N1(p) of eq. (14):

N1(pt) =
1

2π

∫ 2π

0

N1(p)dφ (22)

and the elliptic flow:

v2(pt) =

∫ 2π

0
dφN1(p) cos(2φ)∫ 2π

0 dφN1(p)
. (23)

Result for the transverse momentum spectrum is: (we

substitute E = mt =
√
m2 + p2t as being at mid-rapidity):

N1(pt) =2πN V

(
mt −

p2t (Teff − T0)

mtTeff

)
(24)

× exp

[
−
m2

t +m2

2mtT0
−

p2t
2mtTeff

]
,

where we introduced 1/Teff = 0.5(1/Tx+1/Ty), the effec-
tive temperature. The result for the elliptic flow is:

v2(pt) =
I1(w)

I0(w)
(25)

where I0, and I1 are the modified Bessel functions while

w =
p2t
4mt

(
1

Ty
−

1

Tx

)
. (26)

The formula for v2 gives back previously found formulas of
non-relativistic solutions [16] and relativistic solutions [19,
20]. Also the formula for N1(pt) is similar to results of the
previously mentioned papers.

An important consequence of the above results is that
neither N1 nor v2 depends on the EoS itself, only through
the final state parameters. If we determine for example T0,
the freeze-out central (at the center means here rx = ry =
rz = 0) temperature, κ or the initial temperature Tinitial

still cannot be calculated. We only know that Tinitial =
T0(τ0/τinitial)

3/κ, see eq. (7). Thus κ or Tinitial has to be
determined from another measurement, e.g. the spectrum
of thermal photons.
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5.2 The Bose-Einstein correlations

The two-particle Bose-Einstein correlation function [21] is
also calculable from the source distribution

C2(q,K) = 1 +

∣∣∣∣∣
S̃(q,K)

S̃(q = 0,K)

∣∣∣∣∣

2

, (27)

with q being the momentum difference and K the average
momentum of the pair (and q ≪ K, hence p1 ≈ p2 ≈ K),

and S̃(q,K) is the Fourier transformed (x → q) of S(x,K).
The result of the solution is:

C2(q,K) = 1 + exp
[
−R2

xq
2
x −R2

yq
2
y −R2

zq
2
z

]
, (28)

where Rx, Ry, Rz are the correlation radii, called HBT
radii:

R2
x =

T0τ
2
0 (Tx − T0)

MtTx
, (29)

R2
y =

T0τ
2
0 (Ty − T0)

MtTy
, (30)

R2
z =

T0τ
2
0 (Tz − T0)

MtTz
, (31)

where Mt is the transverse mass belonging to the average
momentum K = 0.5(p1 + p2), which is (at mid-rapidity)
Mt = 0.5 (mt,1 +mt,2 ). The mt,1, and mt,2 quantities are
the transverse masses, the Tx, Ty, and Tz are the effec-
tive temperatures belonging to the average momentum
(i.e. here Tx = Tx|Mt

). Note that the above formulas re-
semble the usual scaling of the HBT radii: R2 ∝ 1/Mt.
This means that all radii scale with the average trans-
verse mass, independently of particle type, i.e. if plotted
versus average mt, kaon radii and pion radii fall onto the
same scaling curve. Note that HBT radii depend also only
on final state parameters, not on the EoS itself, similarly
to the elliptic flow or spectra (see the last paragraph of
subsection 5.1 on this matter).

To compare the HBT radii with the data the Bertsch-
Pratt [22] frame is to be used. It has three axes: the out is
the direction of the average transverse momentum of the
pair, the long direction is equal to the direction z, and the
side direction is orthogonal to both of them. The result
for Rout, Rside and Rlong is:

R2
out = R2

side =
R2

x +R2
y

2
, (32)

R2
long = R2

z . (33)

Clearly in this solution the out and side radii are equal.
This can be attributed to the instantaneous freeze-out; a
non-zero freeze-out duration would make R2

out bigger by
a term of ∆τ2p2t/E

2. Supported by the data, we use the
∆τ = 0 approximation in our solution, which corresponds
to instantaneous freeze-out.

fit parameter N1 and HBT elliptic flow
0-30% cent. 0-92% cent.

T0 [MeV] 199±3 204±7
ǫ 0.80±0.02 0.34±0.03

u2

t/b -0.84±0.08 -0.34±0.01
τ0[fm/c] 7.7±0.1 -

Ż2

0/b -1.6±0.3 -
NDF 41 34
χ2 171 256

χ2 with 3%
24 66

theory error

Table 1. The parameters obtained from fits to Au+Au
PHENIX data [23–25]. The difference of the parameters can be
explained by the centrality of the datasets (0-30% for spectra
and HBT versus 0-92% for elliptic flow). The fact that u2

t/b is
negative means that b < 0, i.e. the fireball is the hottest in the
center and colder outside (i.e. a Gaussian temperature profile).

6 Comparing the observables to RHIC data

We compared the above results to PHENIX data of 200
GeV Au+Au collisions. We fitted our above formulas to
spectra and HBT positive pion data [23, 24] (0-30% cen-
trality) and elliptic flow data [25] for π±, K±, p and p
particles (0-92% centrality).

The used parameters for spectra and HBT are T0 (cen-
tral freeze-out temperature), τ0 (freeze-out proper-time),

b (temperature gradient) and the expansion rates Ẋ0, Ẏ0

and Ż0. Instead of Ẋ0 and Ẏ0 however we use two more
commonly used parameters, freeze-out expansion aniso-
tropy ǫ and average transverse expansion rate ut:

ǫ =
Ẋ2 − Ẏ 2

Ẋ2 + Ẏ 2
, (34)

u2
t =

1

2

(
1

Ẋ2
+

1

Ẏ 2

)
(35)

. It turns out however, that the expansion rates appear
only in combination with the temperature gradient b, hence
we use u2

t/b and Ż2
0/b as fit parameters. In eq. (25), the

formula for the elliptic flow, τ0 and Ż2
0 do not appear,

hence we do not use them when fitting v2 data.
For analyzing the confidence levels we calculate χ2 and

number of degrees of freedom (NDF) of the fits. However,
in the calculation there are numerous approximations. The
main approximation is the Gaussian one in the integra-
tion. Here we neglect terms of higher order. Later, with
the given parameters we can estimate their contribution
at a given point. The error coming from the integration
can thus be estimated to be at least 3%. In table 1. we
also give the χ2 using this additional error.

7 Discussion of the results

The fit results are shown in fig. 1. The fit parameters are
listed in table 1. The central freeze-out temperature T0

is around 200 MeV for both datasets, and the fireball is
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colder away from the center. The expansion eccentricity ǫ
being positive tells us that the expansion is faster in-plane.
Because of the Hubble-flow this means that the source is
in-plane elongated, similarly to the result of ref. [26]. The
freeze-out happens at a proper-time of τ0 = 7.7 fm/c.

Our fit parameters describe the fireball at the freeze-
out. However, the solution is time-dependent, most im-
portantly the temperature depends on time as described
by eq. (7). We plotted the time-dependence of the central
temperature in fig. 2 for several values of κ, i.e. several
EoS’. From this, assuming for example an average κ of
10 [27] one can also calculate the initial central tempera-
ture of the fireball based on eq. (7):

Tinitial = T0

(
τ0

τinitial

)3/κ

(36)

This yields 370 MeV at tinitial=1 fm/c (note that t = τ
at the center of the fireball), which is in agreement with
PHENIX measurements [28].

All the hadronic observables depend on the time of
the freeze-out through the central temperature parameter
T0. If the freeze-out happens earlier or later, the central
temperature is larger, and this enters into the HBT radii
and the elliptic flow as well through the centeral freeze-out
temperature. However, if we fix these final state (freeze-
out) parameters and assume a κ value, we can go back in
time using the solution. We have to take eqs. (25) and (32)
and substitute the time dependent central temperature:

T0 → T0

(τ0
τ

)3/κ
. (37)

See such plots in fig. 2, for different values of κ. In this
figure we plot v2 and Rout = Rside for illustration purposes
at pt = 400 MeV/c, the other parametes are taken from
the fits. Note that in reality κ changes over time, i.e. it
goes smoothly to the EoS of a collisionless hadron gas.

8 Summary

Exact parametric solutions of perfect hydrodynamics were
long searched for in order to describe the matter produced
in heavy ion collisions at RHIC. We extracted observables
for the first time from the relativistic, 1+3 dimensional,
ellipsoidally symmetric, exact solution of ref. [2]. We cal-
culated momentum distribution, elliptic flow and Bose-
Einstein correlation radii from the solution. We compared
the results to 200 GeV Au+Au PHENIX data [23–25]. The
solution is compatible with the data. The fitted parame-
ters of the solution describe the hadronic freeze-out. In
the framework of our solution the fireball is in-plane elon-
gated and has a Gaussian temperature profile. If using an
experimentally determined average EoS of κ ≈ 10 [27], our
results yield approximately 370 MeV at τinitial=1 fm/c, in
agreement with recent PHENIX measurements [28].
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Figure 1. Fits to 0-30% centrality PHENIX Au+Au spec-
tra [23] (top) HBT radii [25] (middle) and 0-92% centrality
PHENIX Au+Au elliptic flow [24] (bottom). See the obtained
parameters in table 1. In the middle plot the lower curve is the
fit to Rout and Rside.
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T
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M
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]

0
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 = 3 κ
 = 5 κ
 = 10 κ

 [fm/c]τ4 4.5 5 5.5 6 6.5 7 7.5

 [
fm

]
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Figure 2. Time dependence of the central temperature of the
fireball, from eq. (7) (top) and time dependence of the HBT
radii (middle) and the elliptic flow (bottom) where time depen-
dence is included in the temperature T0. The plots are shown
for different κ values. In reality κ may change with time, we
show here the curves only for fixed κ values. Assuming an aver-
age of κ = 10 [27] onegets an inital temperature of 370 MeV at
tinitial=1 fm/c, in agreement with PHENIX measurements [28].
The parameters used in this figure are that of table 1. Addi-
tionally a transverse momentum pt had to be specified to plot
v2, Rout and Rside at, we chose pt = 400 MeV/c. Note further-
more that as we go backwards in time, the central temperature
reaches a point where the E > T0 criterion is not valid any
more. Thus in v2, Rout and Rside we can go back only while
T < E is valid, i.e. roughly 4 fm/c for κ = 3 at the given pt.
We did not plot the κ = 1.5 case on those plots as the validity
ends there at much bigger times.
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