1,683 research outputs found
Theoretical investigations of a highly mismatched interface: the case of SiC/Si(001)
Using first principles, classical potentials, and elasticity theory, we
investigated the structure of a semiconductor/semiconductor interface with a
high lattice mismatch, SiC/Si(001). Among several tested possible
configurations, a heterostructure with (i) a misfit dislocation network pinned
at the interface and (ii) reconstructed dislocation cores with a carbon
substoichiometry is found to be the most stable one. The importance of the slab
approximation in first-principles calculations is discussed and estimated by
combining classical potential techniques and elasticity theory. For the most
stable configuration, an estimate of the interface energy is given. Finally,
the electronic structure is investigated and discussed in relation with the
dislocation array structure. Interface states, localized in the heterostructure
gap and located on dislocation cores, are identified
The spectral gap for some spin chains with discrete symmetry breaking
We prove that for any finite set of generalized valence bond solid (GVBS)
states of a quantum spin chain there exists a translation invariant
finite-range Hamiltonian for which this set is the set of ground states. This
result implies that there are GVBS models with arbitrary broken discrete
symmetries that are described as combinations of lattice translations, lattice
reflections, and local unitary or anti-unitary transformations. We also show
that all GVBS models that satisfy some natural conditions have a spectral gap.
The existence of a spectral gap is obtained by applying a simple and quite
general strategy for proving lower bounds on the spectral gap of the generator
of a classical or quantum spin dynamics. This general scheme is interesting in
its own right and therefore, although the basic idea is not new, we present it
in a system-independent setting. The results are illustrated with an number of
examples.Comment: 48 pages, Plain TeX, BN26/Oct/9
Determination of the parameters of semiconducting CdF2:In with Schottky barriers from radio-frequency measurements
Physical properties of semiconducting CdF_2 crystals doped with In are
determined from measurements of the radio-frequency response of a sample with
Schottky barriers at frequencies 10 - 10^6 Hz. The dc conductivity, the
activation energy of the amphoteric impurity, and the total concentration of
the active In ions in CdF_2 are found through an equivalent-circuit analysis of
the frequency dependencies of the sample complex impedance at temperatures from
20 K to 300 K. Kinetic coefficients determining the thermally induced
transitions between the deep and the shallow states of the In impurity and the
barrier height between these states are obtained from the time-dependent
radio-frequency response after illumination of the material. The results on the
low-frequency conductivity in CdF_2:In are compared with submillimeter (10^{11}
- 10^{12} Hz) measurements and with room-temperature infrared measurements of
undoped CdF_2. The low-frequency impedance measurements of semiconductor
samples with Schottky barriers are shown to be a good tool for investigation of
the physical properties of semiconductors.Comment: 9 pages, 7 figure
Lensing at cosmological scales: a test of higher dimensional gravity
Recent developments in gravitational lensing astronomy have paved the way to
genuine mappings of the gravitational potential at cosmological scales. We
stress that comparing these data with traditional large scale structure surveys
will provide us with a test of gravity at such scales. These constraints could
be of great importance in the framework of higher dimensional cosmological
models.Comment: 4 pages, latex, 3 figure
Probing Sub-Micron Forces by Interferometry of Bose-Einstein Condensed Atoms
We propose a technique, using interferometry of Bose-Einstein condensed
alkali atoms, for the detection of sub-micron-range forces. It may extend
present searches at 1 micron by 6 to 9 orders of magnitude, deep into the
theoretically interesting regime of 1000 times gravity. We give several
examples of both four-dimensional particles (moduli), as well as
higher-dimensional particles -- vectors and scalars in a large bulk-- that
could mediate forces accessible by this technique.Comment: 32 pages, 5 figures, RevTeX4, expanded discussion of interactions,
references added, to appear in PR
Sub-millimeter Tests of the Gravitational Inverse-square Law
Motivated by a variety of theories that predict new effects, we tested the
gravitational 1/r^2 law at separations between 10.77 mm and 137 microns using
two different 10-fold azimuthally symmetric torsion pendulums and rotating
10-fold symmetric attractors. Our work improves upon other experiments by up to
a factor of about 100. We found no deviation from Newtonian physics at the 95%
confidence level and interpret these results as constraints on extensions of
the Standard Model that predict Yukawa or power-law forces. We set a constraint
on the largest single extra dimension (assuming toroidal compactification and
that one extra dimension is significantly larger than all the others) of R <=
160 microns, and on two equal-sized large extra dimensions of R <= 130 microns.
Yukawa interactions with |alpha| >= 1 are ruled out at 95% confidence for
lambda >= 197 microns. Extra-dimensions scenarios stabilized by radions are
restricted to unification masses M >= 3.0 TeV/c^2, regardless of the number of
large extra dimensions. We also provide new constraints on power-law potentials
V(r)\propto r^{-k} with k between 2 and 5 and on the gamma_5 couplings of
pseudoscalars with m <= 10 meV/c^2.Comment: 34 pages, 38 figure
Inclusive production of and mesons in charged current interactions
The inclusive production of the meson resonances ,
and in neutrino-nucleus charged current interactions has been
studied with the NOMAD detector exposed to the wide band neutrino beam
generated by 450 GeV protons at the CERN SPS. For the first time the
meson is observed in neutrino interactions. The statistical
significance of its observation is 6 standard deviations. The presence of
in neutrino interactions is reliably established. The average
multiplicity of these three resonances is measured as a function of several
kinematic variables. The experimental results are compared to the
multiplicities obtained from a simulation based on the Lund model. In addition,
the average multiplicity of in antineutrino - nucleus
interactions is measured.Comment: 23 pages, 14 figures, 8 tables. To appear in Nucl. Phys.
Colossal dielectric constants in transition-metal oxides
Many transition-metal oxides show very large ("colossal") magnitudes of the
dielectric constant and thus have immense potential for applications in modern
microelectronics and for the development of new capacitance-based
energy-storage devices. In the present work, we thoroughly discuss the
mechanisms that can lead to colossal values of the dielectric constant,
especially emphasising effects generated by external and internal interfaces,
including electronic phase separation. In addition, we provide a detailed
overview and discussion of the dielectric properties of CaCu3Ti4O12 and related
systems, which is today's most investigated material with colossal dielectric
constant. Also a variety of further transition-metal oxides with large
dielectric constants are treated in detail, among them the system La2-xSrxNiO4
where electronic phase separation may play a role in the generation of a
colossal dielectric constant.Comment: 31 pages, 18 figures, submitted to Eur. Phys. J. for publication in
the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator
Transitions and Ordering of Microscopic Degrees of Freedom
Search for the exotic resonance in the NOMAD experiment
A search for exotic Theta baryon via Theta -> proton +Ks decay mode in the
NOMAD muon neutrino DIS data is reported. The special background generation
procedure was developed. The proton identification criteria are tuned to
maximize the sensitivity to the Theta signal as a function of xF which allows
to study the Theta production mechanism. We do not observe any evidence for the
Theta state in the NOMAD data. We provide an upper limit on Theta production
rate at 90% CL as 2.13 per 1000 of neutrino interactions.Comment: Accepted to European Physics Journal
Search for heavy neutrinos mixing with tau neutrinos
We report on a search for heavy neutrinos (\nus) produced in the decay
D_s\to \tau \nus at the SPS proton target followed by the decay \nudecay in
the NOMAD detector. Both decays are expected to occur if \nus is a component
of .\
From the analysis of the data collected during the 1996-1998 runs with
protons on target, a single candidate event consistent with
background expectations was found. This allows to derive an upper limit on the
mixing strength between the heavy neutrino and the tau neutrino in the \nus
mass range from 10 to 190 . Windows between the SN1987a and Big Bang
Nucleosynthesis lower limits and our result are still open for future
experimental searches. The results obtained are used to constrain an
interpretation of the time anomaly observed in the KARMEN1 detector.\Comment: 20 pages, 7 figures, a few comments adde
- …
