187 research outputs found

    The characteristics of the lower stratospheric gravity wave field above Halley (75°S, 26°W), Antarctica, from radiosonde observations

    Get PDF
    Daily radiosonde observations between 2003 and 2013 from Halley research station, Antarctica (75°S, 26°W) are used to determine climatologies of gravity wave properties in the lower stratosphere (between 15 km and 22 km altitude). Individual waves are extracted from the radiosonde profile using wavelet analysis and separated into upward and downward propagating waves. An increase in the percentage of downward propagating waves (~30% of the waves) is seen during the winter months. For the upward and downward propagating waves their horizontal and vertical wavelength, intrinsic frequency, energy density, pseudo-momentum flux and direction of propagation are determined. The upward propagating wave field is found to be dominated by waves with short vertical wavelength (~1 km) and low intrinsic frequency (ω~f). The downward propagating wave field is composed of a wider distribution of vertical wavelength waves and has a larger proportion of higher frequency waves present. The upward propagating waves show an increase in total energy density in autumn and spring, the larger increase occurs during spring (up to 1.7 J kg-1 in September). The downward propagating waves increase in total energy density occurs during wintertime (up to 0.7 J kg-1 in June). During winter the contributions of the upward and downward propagating waves to the total energy density and pseudo-momentum flux are almost equal. This paper details the first study of individual gravity wave properties combined into upward and downward propagating wave climatologies in the lower stratosphere above Halley

    Model thrombi formed under flow reveal the role of factor XIII-mediated cross-linking in resistance to fibrinolysis

    Get PDF
    Background: Activated factor XIII (FXIIIa), a transglutaminase, introduces fibrin-fibrin and fibrin-inhibitor cross-links, resulting in more mechanically stable clots. The impact of cross-linking on resistance to fibrinolysis has proved challenging to evaluate quantitatively. Methods: We used a whole blood model thrombus system to characterize the role of cross-linking in resistance to fibrinolytic degradation. Model thrombi, which mimic arterial thrombi formed in vivo, were prepared with incorporated fluorescently labeled fibrinogen, in order to allow quantification of fibrinolysis as released fluorescence units per minute. Results: A site-specific inhibitor of transglutaminases, added to blood from normal donors, yielded model thrombi that lysed more easily, either spontaneously or by plasminogen activators. This was observed both in the cell/platelet-rich head and fibrin-rich tail. Model thrombi from an FXIII-deficient patient lysed more quickly than normal thrombi; replacement therapy with FXIII concentrate normalized lysis. In vitro addition of purified FXIII to the patient's preprophylaxis blood, but not to normal control blood, resulted in more stable thrombi, indicating no further efficacy of supraphysiologic FXIII. However, addition of tissue transglutaminase, which is synthesized by endothelial cells, generated thrombi that were more resistant to fibrinolysis; this may stabilize mural thrombi in vivo. Conclusions: Model thrombi formed under flow, even those prepared as plasma 'thrombi', reveal the effect of FXIII on fibrinolysis. Although very low levels of FXIII are known to produce mechanical clot stability, and to achieve ?-dimerization, they appear to be suboptimal in conferring full resistance to fibrinolysis

    Superfluid transition temperature in a trapped gas of Fermi atoms with a Feshbach resonance

    Full text link
    We investigate strong coupling effects on the superfluid phase transition in a gas of Fermi atoms with a Feshbach resonance. The Feshbach resonance describes a composite quasi-Boson, which can give rise to an additional pairing interaction between the Fermi atoms. This attractive interaction becomes stronger as the threshold energy of the Feshbach resonance two-particle bound state is lowered. In a recent paper, we showed that in the uniform Fermi gas, this tunable pairing interaction naturally leads to a BCS-BEC crossover of the Nozi`eres and Schmitt-Rink kind, in which the BCS-type superfluid phase transition continuously changes into the BEC-type as the threshold energy is decreased. In this paper, we extend our previous work by including the effect of a harmonic trap potential, treated within the local density approximation (LDA). We also give results for both weak and strong coupling to the Feshbach resonance. We show that the BCS-BEC crossover phenomenon strongly modifies the shape of the atomic density profile at the superfluid phase transition temperature Tc, reflecting the change of the dominant particles going from Fermi atoms to composite Bosons. In the BEC regime, these composite Bosons are shown to first appear well above Tc. We also discuss the "phase diagram" above Tc as a function of the tunable threshold energy. We introduce a characteristic temperature T* describing the effective crossover in the normal phase from a Fermi gas of atoms to a gas of stable molecules.Comment: 43 pages, 13 figures (submitted to PRA

    Theory of output coupling for trapped fermionic atoms

    Full text link
    We develop a dynamic theory of output coupling, for fermionic atoms initially confined in a magnetic trap. We consider an exactly soluble one-dimensional model, with a spatially localized delta-type coupling between the atoms in the trap and a continuum of free-particle external modes. Two important special cases are considered for the confinement potential: the infinite box and the harmonic oscillator. We establish that in both cases a bound state of the coupled system appears for any value of the coupling constant, implying that the trap population does not vanish in the infinite-time limit. For weak coupling, the energy spectrum of the outgoing beam exhibits peaks corresponding to the initially occupied energy levels in the trap; the height of these peaks increases with the energy. As the coupling gets stronger, the energy spectrum is displaced towards dressed energies of the fermions in the trap. The corresponding dressed states result from the coupling between the unperturbed fermionic states in the trap, mediated by the coupling between these states and the continuum. In the strong-coupling limit, there is a reinforcement of the lowest-energy dressed mode, which contributes to the energy spectrum of the outgoing beam more strongly than the other modes. This effect is especially pronounced for the one-dimensional box, which indicates that the efficiency of the mode-reinforcement mechanism depends on the steepness of the confinement potential. In this case, a quasi-monochromatic anti-bunched atomic beam is obtained. Results for a bosonic sample are also shown for comparison.Comment: 16 pages, 7 figures, added discussion on time-dependent spectral distribution and corresponding figur

    Crossovers in Unitary Fermi Systems

    Full text link
    Universality and crossover is described for attractive and repulsive interactions where, respectively, the BCS-BEC crossover takes place and a ferromagnetic phase transition is claimed. Crossovers are also described for optical lattices and multicomponent systems. The crossovers, universal parameters and phase transitions are described within the Leggett and NSR models and calculated in detail within the Jastrow-Slater approximation. The physics of ultracold Fermi atoms is applied to neutron, nuclear and quark matter, nuclei and electrons in solids whenever possible. Specifically, the differences between optical lattices and cuprates is discussed w.r.t. antiferromagnetic, d-wave superfluid phases and phase separation.Comment: 50 pages, 15 figures. Contribution to Lecture Notes in Physics "BCS-BEC crossover and the Unitary Fermi Gas" edited by W. Zwerge

    Paradoxical co-existing base metal sulphides in the mantle: The multi-event record preserved in Loch Roag peridotite xenoliths, North Atlantic Craton

    Get PDF
    The role of the subcontinental lithospheric mantle as a source of precious metals for mafic magmas is contentious and, given the chalcophile (and siderophile) character of metals such as the platinum-group elements (PGE), Se, Te, Re, Cu and Au, the mobility of these metals is intimately linked with that of sulphur. Hence the nature of the host phase(s), and their age and stability in the subcontinental lithospheric mantle may be of critical importance. We investigate the sulphide mineralogy and sulphide in situ trace element compositions in base metal sulphides (BMS) in a suite of spinel lherzolite mantle xenoliths from northwest Scotland (Loch Roag, Isle of Lewis). This area is situated on the margin of the North Atlantic Craton which has been overprinted by a Palaeoproterozoic orogenic belt, and occurs in a region which has undergone magmatic events from the Palaeoproterozoic to the Eocene. We identify two populations of co-existing BMS within a single spinel lherzolite xenolith (LR80) and which can also be recognised in the peridotite xenolith suite as a whole. Both populations consist of a mixture of Fe-Ni-Cu sulphide minerals, and we distinguished between these according to BMS texture, petrographic setting (i.e., location within the xenolith in terms of ‘interstitial’ or within feldspar-spinel symplectites, as demonstrated by X-ray Computed Microtomography) and in situ trace element composition. Group A BMS are coarse, metasomatic, have low concentrations of total PGE (< 40 ppm) and high (Re/Os)N (ranging 1 to 400). Group B BMS strictly occur within symplectites of spinel and feldspar, are finer-grained rounded droplets, with micron-scale PtS (cooperite), high overall total PGE concentrations (15–800 ppm) and low (Re/Os)N ranging 0.04 to 2. Group B BMS sometimes coexist with apatite, and both the Group B BMS and apatite can preserve rounded micron-scale Ca-carbonate inclusions indicative of sulphide-carbonate-phosphate immiscibility. This carbonate-phosphate metasomatic association appears to be important in forming PGE-rich sulphide liquids, although the precise mechanism for this remains obscure. As a consequence of their position within the symplectites, Group B BMS are particularly vulnerable to being incorporated in ascending mantle-derived magmas (either by melting or physical entrainment). Based on the cross-cutting relationships of the symplectites, it is possible to infer the relative ages of each metasomatic BMS population. We tally these with major tectono-magmatic events for the North Atlantic region by making comparisons to carbonatite events recorded in crustal and mantle rocks, and we suggest that the Pt-enrichment was associated with a pre-Carboniferous carbonatite episode. This method of mantle xenolith base metal sulphide documentation may ultimately permit the temporal and spatial mapping of the chalcophile metallogenic budget of the lithospheric mantle, providing a blueprint for assessing regional metallogenic potential. Abbreviations: NAC, North Atlantic Craton; GGF, Great Glen Fault; NAIP, North Atlantic Igneous Province; BPIP, British Palaeogene Igneous Province; SCLM, subcontinental lithospheric mantle; PGE, platinum-group elements; HSE, highly siderophile elements; BMS, base metal sulphid

    Non-bee insects are important contributors to global crop pollination

    Get PDF
    Wild andmanaged bees arewell documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25-50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.Peer Reviewe

    Communication is key: a study of the development of communication key skills in China

    Get PDF
    Different countries offer alternative curricula around what might be designated language, literacy and/or communication. This paper focuses on the latter which has typically been associated with vocational education and often labelled a ‘key’ or ‘core’ skill that forms part of a wider set of life and employability skills. In recent years, as China has emerged as a global economy, education has been significant in its policy and development. This research explores staff and student responses to the introduction of a key skills communication course in three Chinese further education vocational colleges. The initiative was prompted by research in China which had suggested that communication is important not just for education (Ye and Li 2007) but also for employability, and that the ability to communicate effectively could be instrumental in individuals’ success and development (Tong and Zhong 2008). It explores what communication key skills might mean in a Chinese context and questions notions of transferability and of competence and performance in communication. It analyses how motivation could affect learner success and the relationship of pedagogy to curriculum and, finally, it considers how communication might be an element in the longer-term social and political development of critical literacies

    The influence of seat backrest angle on perceived discomfort during exposure to vertical whole-body vibration

    Get PDF
    This article was published in the journal, Ergonomics [© Taylor & Francis Ltd.] and the definitive version is available at: http://dx.doi.org/10.1080/00140139.2012.684889National and International Standards (e.g. BS 6841 and ISO 2631-1) provide methodologies for the measurement and assessment of whole-body vibration in terms of comfort and health. The EU Physical Agents (Vibration) Directive (PAVD) provides criteria by which vibration magnitudes can be assessed. However, these standards only consider upright seated (90°) and recumbent (0°) backrest angles, and do not provide guidance for semi-recumbent postures. This article reports an experimental programme that investigated the effects of backrest angle on comfort during vertical whole-body vibration. The series of experiments showed that a relationship exists between seat backrest angle, whole-body vibration frequency and perceived levels of discomfort. The recumbent position (0°) was the most uncomfortable and the semi-recumbent positions of 67.5° and 45° were the least uncomfortable. A new set of frequency weighting curves are proposed which use the same topology as the existing BS and ISO standards. These curves could be applied to those exposed to whole-body vibration in semi-recumbent postures to augment the existing standardised methods. Practitioner Summary: Current vibration standards provide guidance for assessing exposures for seated, standing and recumbent positions, but not for semi-recumbent postures. This article reports new experimental data systematically investigating the effect of backrest angle on discomfort experienced. It demonstrates that most discomfort is caused in a recumbent posture and that least was caused in a semi-recumbent posture
    corecore