19 research outputs found

    Alpha2-Containing Glycine Receptors Promote Neonatal Spontaneous Activity of Striatal Medium Spiny Neurons and Support Maturation of Glutamatergic Inputs

    Get PDF
    Glycine receptors (GlyRs) containing the alpha 2 subunit are highly expressed in the developing brain, where they regulate neuronal migration and maturation, promote spontaneous network activity and subsequent development of synaptic connections. Mutations in GLRA2 are associated with autism spectrum disorder, but the underlying pathophysiology is not described yet. Here, using Glra2-knockout mice, we found a GIyR-dependent effect on neonatal spontaneous activity of dorsal striatum medium spiny neurons (MSNs) and maturation of the incoming glutamatergic innervation. Our data demonstrate that functional GlyRs are highly expressed in MSNs of one-week-old mice, but they do not generate endogenous chloride-mediated tonic or phasic current. Despite of that, knocking out the Glra2 severely affects the shape of action potentials and impairs spontaneous activity and the frequency of miniature AMPA receptor-mediated currents in MSNs. This reduction in spontaneous activity and glutamatergic signaling can attribute to the observed changes in neonatal behavioral phenotypes as seen in ultrasonic vocalizations and righting reflex. In adult G/ra2-knockout animals, the glutamatergic synapses in MSNs remain functionally underdeveloped. The number of glutamatergic synapses and release probability at presynaptic site remain unaffected, but the amount of postsynaptic AMPA receptors is decreased. This deficit is a consequence of impaired development of the neuronal circuitry since acute inhibition of GlyRs by strychnine in adult MSNs does not affect the properties of glutamatergic synapses. Altogether, these results demonstrate that GIyR-mediated signaling supports neonatal spontaneous MSN activity and, in consequence, promotes the functional maturation of glutamatergic synapses on MSNs. The described mechanism might shed light on the pathophysiological mechanisms in GLRA2-linked autism spectrum disorder cases

    Age-related shift in LTD is dependent on neuronal adenosine A(2A) receptors interplay with mGluR5 and NMDA receptors

    Get PDF
    Synaptic dysfunction plays a central role in Alzheimer's disease (AD), since it drives the cognitive decline. An association between a polymorphism of the adenosine A2A receptor (A2AR) encoding gene-ADORA2A, and hippocampal volume in AD patients was recently described. In this study, we explore the synaptic function of A2AR in age-related conditions. We report, for the first time, a significant overexpression of A2AR in hippocampal neurons of aged humans, which is aggravated in AD patients. A similar profile of A2AR overexpression in rats was sufficient to drive age-like memory impairments in young animals and to uncover a hippocampal LTD-to-LTP shift. This was accompanied by increased NMDA receptor gating, dependent on mGluR5 and linked to enhanced Ca(2+) influx. We confirmed the same plasticity shift in memory-impaired aged rats and APP/PS1 mice modeling AD, which was rescued upon A2AR blockade. This A2AR/mGluR5/NMDAR interaction might prove a suitable alternative for regulating aberrant mGluR5/NMDAR signaling in AD without disrupting their constitutive activity

    Neuropeptide Y, somatostatin, and cholecystokinin neurone preservation in anaplastic astrocytomas.

    No full text
    Using immunohistochemistry, well-preserved neuronal cell bodies and fibres containing neuropeptide Y, somatostatin, and cholecystokinin immunoreactivity have been identified in all seven supratentorial anaplastic astrocytomas studied. These neurones have been shown not only on the edge but also in the depth of the neoplastic tissue. These neuropeptides were not present in 18 other intracranial tumours (3 astrocytomas, 1 subependymoma, 8 glioblastoma multiformes, 1 meningioma, and 5 metastases). In all 25 intracranial tumours studied, no immunoreactivity was found for vasoactive intestinal polypeptide, substance P, methionine-enkephalin, leucine-enkephalin, synenkephalin, neurophysin I-II, and corticotropin releasing factor

    Inhibition of constitutive inward rectifier currents in cerebellar granule cells by pharmacological and synaptic activation of GABA receptors.

    No full text
    gamma-Aminobutyric acid (GABA)(B) receptors are known to enhance activation of Kir3 channels generating G-protein-dependent inward rectifier K(+)-currents (GIRK). In some neurons, GABA(B) receptors either cause a tonic GIRK activation or generate a late K(+)-dependent inhibitory postsynaptic current component. However, other neurons express Kir2 channels, which generate a constitutive inward rectifier K(+)-current (CIRK) without requiring G-protein activation. The functional coupling of CIRK with GABA(B) receptors remained unexplored so far. About 50% of rat cerebellar granule cells in the internal granular layer of P19-26 rats showed a sizeable CIRK current. Here, we have investigated CIRK current regulation by GABA(B) receptors in cerebellar granule cells, which undergo GABAergic inhibition through Golgi cells. By using patch-clamp recording techniques and single-cell reverse transcriptase-polymerase chain reaction in acute cerebellar slices, we show that granule cells co-express Kir2 channels and GABA(B) receptors. CIRK current biophysical properties were compatible with Kir2 but not Kir3 channels, and could be inhibited by the GABA(B) receptor agonist baclofen. The action of baclofen was prevented by the GABA(B) receptor blocker CGP35348, involved a pertussis toxin-insensitive G-protein-mediated pathway, and required protein phosphatases inhibited by okadaic acid. GABA(B) receptor-dependent CIRK current inhibition could also be induced by repetitive GABAergic transmission at frequencies higher than the basal autorhythmic discharge of Golgi cells. These results suggest therefore that GABA(B) receptors can exert an inhibitory control over CIRK currents mediated by Kir2 channels. CIRK inhibition was associated with an increased input resistance around rest and caused a approximately 5 mV membrane depolarization. The pro-excitatory action of these effects at an inhibitory synapse may have an homeostatic role re-establishing granule cell readiness under conditions of strong inhibition.Journal ArticleResearch Support, Non-U.S. Gov'tFLWINinfo:eu-repo/semantics/publishe

    Altered Neuronal Excitability in Cerebellar Granule Cells of Mice Lacking Calretinin

    No full text
    Calcium-binding proteins such as calretinin are abundantly expressed in distinctive patterns in the CNS, but their physiological function remains poorly understood. Calretinin is expressed in cerebellar granule cells, which provide the major excitatory input to Purkinje cells through parallel fibers. Calretinin-deficient mice exhibit dramatic alterations in motor coordination and Purkinje cell firing recorded in vivo through unknown mechanisms. In the present study, we used patch-clamp recording techniques in acute slice preparation to investigate the effect of a null mutation of the calretinin gene on the intrinsic electroresponsiveness of cerebellar granule cells at a mature developmental stage. Calretinin-deficient granule cells exhibit faster action potentials and generate repetitive spike discharge showing an enhanced frequency increase with injected currents. These alterations disappear when 0.15 mm of the exogenous fast-calcium buffer BAPTA is infused in the cytosol to restore the calcium-buffering capacity. A proposed mathematical model demonstrates that the observed alterations of granule cell excitability can be explained by a decreased cytosolic calcium-buffering capacity resulting from the absence of calretinin. This result suggests that calcium-binding proteins modulate intrinsic neuronal excitability and may therefore play a role in information processing in the CNS

    Minocycline in phenotypic models of Huntington's disease.

    No full text
    Minocycline has been shown to be neuroprotective in various models of neurodegenerative diseases. However, its potential in Huntington's disease (HD) models characterized by calpain-dependent degeneration and inflammation has not been investigated. Here, we have tested minocycline in phenotypic models of HD using 3-nitropropionic acid (3NP) intoxication and quinolinic acid (QA) injections. In the 3NP rat model, where the development of striatal lesions involves calpain, we found that minocycline was not protective, although it attenuated the development of inflammation induced after the onset of striatal degeneration. The lack of minocycline activity on calpain-dependent cell death was also confirmed in vitro using primary striatal cells. Conversely, we found that minocycline reduced lesions and inflammation induced by QA. In cultured cells, minocycline protected against mutated huntingtin and staurosporine, stimulations known to promote caspase-dependent cell death. Altogether, these data suggested that, in HD, minocycline may counteract the development of caspase-dependent neurodegeneration, inflammation, but not calpain-dependent neuronal death

    The SH2 domain-containing 5-phosphatase SHIP2 is expressed in the germinal layers of embryo and adult mouse brain: increased expression in N-CAM-deficient mice.

    No full text
    The germinative ventricular zone of embryonic brain contains neural lineage progenitor cells that give rise to neurons, astrocytes and oligodendrocytes. The ability to generate neurons persists at adulthood in restricted brain areas. During development, many growth factors exert their effects by interacting with tyrosine kinase receptors and activate the phosphatidylinositol 3-kinase and the Ras/MAP kinase pathways. By its ability to modulate these pathways, the recently identified Src homology 2 domain-containing inositol polyphosphate 5-phosphatase 2, SHIP2, has the potential to regulate neuronal development. Using in situ hybridization technique with multiple synthetic oligonucleotides, we demonstrated that SHIP2 mRNA was highly expressed in the ventricular zone at early embryonic stages and subventricular zones at latter stages of brain and spinal cord and in the sympathetic chain. No significant expression was seen in differentiated fields. This restricted expression was maintained from embryonic day 11.5 to birth. In the periphery, large expression was detected in muscle and kidney and moderate expression in thyroid, pituitary gland, digestive system and bone. In the adult brain, SHIP2 was mainly restricted in structures containing neural stem cells such as the anterior subventricular zone, the rostral migratory stream and the olfactory tubercle. SHIP2 was also detected in the choroid plexuses and the granular layer of the cerebellum. The specificity of SHIP2 expression in neural stem cells was further demonstrated by (i) the dramatic increase in SHIP2 mRNA signal in neural cell adhesion molecule (N-CAM)-deficient mice, which present an accumulation of progenitor cells in the anterior subventricular zone and the rostral migratory stream, (ii) the abundant expression of 160-kDa SHIP2 by western blotting in proliferating neurospheres in culture and its downregulation in non-proliferating differentiated neurospheres. In conclusion, the close correlation between the pattern of SHIP2 expression in the brain and the proliferative and early differentiative events suggests that the phosphatase SHIP2 may have important roles in neural development.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Adenosine A2A receptors and basal ganglia physiology.

    No full text
    Adenosine A2A receptors are highly enriched in the basal ganglia system. They are predominantly expressed in enkephalin-expressing GABAergic striatopallidal neurons and therefore are highly relevant to the function of the indirect efferent pathway of the basal ganglia system. In these GABAergic enkephalinergic neurons, the A2A receptor tightly interacts structurally and functionally with the dopamine D2 receptor. Both by forming receptor heteromers and by targeting common intracellular signaling cascades, A2A and D2 receptors exhibit reciprocal antagonistic interactions that are central to the function of the indirect pathway and hence to basal ganglia control of movement, motor learning, motivation and reward. Consequently, this A2A/D2 receptors antagonistic interaction is also central to basal ganglia dysfunction in Parkinson's disease. However, recent evidence demonstrates that, in addition to this post-synaptic site of action, striatal A2A receptors are also expressed and have physiological relevance on pre-synaptic glutamatergic terminals of the cortico-limbic-striatal and thalamo-striatal pathways, where they form heteromeric receptor complexes with adenosine A1 receptors. Therefore, A2A receptors play an important fine-tuning role, boosting the efficiency of glutamatergic information flow in the indirect pathway by exerting control, either pre- and/or post-synaptically, over other key modulators of glutamatergic synapses, including D2 receptors, group I metabotropic mGlu5 glutamate receptors and cannabinoid CB1 receptors, and by triggering the cAMP-protein kinase A signaling cascade.Journal ArticleResearch Support, N.I.H. IntramuralResearch Support, Non-U.S. Gov'tReviewinfo:eu-repo/semantics/publishe
    corecore