208 research outputs found

    Establishment of population of introduced brown trout (Salmo trutta) co-related to their feeding habits in river Asiganga, district Uttarkashi, Uttarakhand

    Get PDF
    Uttarakhand is considered as one of the freshwater fish biodiversity zone within India and the aquatic biodiversity here is threatened primarily due to anthropogenic activity and introduction of non-native fishes.  Colonization and invasion of new aquatic habitats are common in nature as a result of climatic or geotectonic events but humans provide additional artificial pathways by which introduced non-native fishes can overcome biogeographic barriers. Here, in this paper, we assessed the i) factors assisting establishment of introduced brown trout’s (Salmo-trutta) population in river Asiganga and other fresh water systems in district Uttarakashi, ii) attributes of brown trout’s dietary habits that are helping them establish their population by analyzing the stomach contents of brown trout and, iii) food preferences of brown trout. As evident from our studies it is found that fish fingerlings is the food of choice and based on the morphometric assessment most of these fingerlings being preferred as food are that of an endemic species Schizothorax.  Brown trout does eat benthos but Selectivity Index data suggest that these benthos are not a preference but lie in the neutral zone as most of the values are between -0.25 to 0.25. Different feeding preferences and reduced water level in pockets of rivers for long distance migration, seems to be major factor in establishment and spread of brown trout which in turn is threatening the endemic fish species of Uttarakhand.  

    On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity

    Full text link
    We prove an inequality on the Wasserstein distance with quadratic cost between two solutions of the spatially homogeneous Boltzmann equation without angular cutoff, from which we deduce some uniqueness results. In particular, we obtain a local (in time) well-posedness result in the case of (possibly very) soft potentials. A global well-posedeness result is shown for all regularized hard and soft potentials without angular cutoff. Our uniqueness result seems to be the first one applying to a strong angular singularity, except in the special case of Maxwell molecules. Our proof relies on the ideas of Tanaka: we give a probabilistic interpretation of the Boltzmann equation in terms of a stochastic process. Then we show how to couple two such processes started with two different initial conditions, in such a way that they almost surely remain close to each other

    A rare presentation of the Klinefelter's syndrome

    Get PDF
    A 16 years old boy with Chronic Renal Failure (CRF) was not suspected of having Klinefelter's syndrome until he complained of painful gynecomastia. He was under haemodialysis for 2 years. At first, he was in an approximately full pubertal development (P5, G5), but he had a small and a firm testis (length 2.2cm) and some degree of facial male pattern hair. He also had a decreased upper to lower body segment ratio and despite having chronic renal failure, he was taller than his parents and siblings. His laboratory tests showed high levels of FSH and normal levels of LH and testosterone. With regards to all these findings, we suspected that there might be an occult Klinefelter's syndrome. So, we made his karyotype that showed a 47XXY pattern. Because there are only a few number of cases that have occult Klinefelter's syndrome in the basis of chronic renal failure, we decided to report this case

    On the critical behavior of disordered quantum magnets: The relevance of rare regions

    Get PDF
    The effects of quenched disorder on the critical properties of itinerant quantum antiferromagnets and ferromagnets are considered. Particular attention is paid to locally ordered spatial regions that are formed in the presence of quenched disorder even when the bulk system is still in the paramagnetic phase. These rare regions or local moments are reflected in the existence of spatially inhomogeneous saddle points of the Landau-Ginzburg-Wilson functional. We derive an effective theory that takes into account small fluctuations around all of these saddle points. The resulting free energy functional contains a new term in addition to those obtained within the conventional perturbative approach, and it comprises what would be considered non-perturbative effects within the latter. A renormalization group analysis shows that in the case of antiferromagnets, the previously found critical fixed point is unstable with respect to this new term, and that no stable critical fixed point exists at one-loop order. This is contrasted with the case of itinerant ferromagnets, where we find that the previously found critical behavior is unaffected by the rare regions due to an effective long-ranged interaction between the order parameter fluctuations.Comment: 16 pp., REVTeX, epsf, 2 figs, final version as publishe

    Crossing and weighted crossing number of near-planar graphs

    Get PDF
    A nonplanar graph G is near-planar if it contains an edge e such that G − e is planar. The problem of determining the crossing number of a near-planar graph is exhibited from different combinatorial viewpoints. On the one hand, we develop min-max formulas involving efficiently computable lower and upper bounds. These min-max results are the first of their kind in the study of crossing numbers and improve the approximation factor for the approximation algorithm given by Hliněny and Salazar (Graph Drawing GD’06). On the other hand, we show that it is NP-hard to compute a weighted version of the crossing number for near-planar graphs

    Smeared phase transition in a three-dimensional Ising model with planar defects: Monte-Carlo simulations

    Get PDF
    We present results of large-scale Monte Carlo simulations for a three-dimensional Ising model with short range interactions and planar defects, i.e., disorder perfectly correlated in two dimensions. We show that the phase transition in this system is smeared, i.e., there is no single critical temperature, but different parts of the system order at different temperatures. This is caused by effects similar to but stronger than Griffiths phenomena. In an infinite-size sample there is an exponentially small but finite probability to find an arbitrary large region devoid of impurities. Such a rare region can develop true long-range order while the bulk system is still in the disordered phase. We compute the thermodynamic magnetization and its finite-size effects, the local magnetization, and the probability distribution of the ordering temperatures for different samples. Our Monte-Carlo results are in good agreement with a recent theory based on extremal statistics.Comment: 9 pages, 6 eps figures, final version as publishe

    Students for global oncology: Building a movement for student education and engagement in an emerging field

    Get PDF
    Program/Project Purpose: Increased recognition of the global cancer burden and inequalities in care and outcomes have led to the growing field of global oncology, focused on strengthening health systems to improve cancer prevention and care. Motivated students and trainees are in need of pathways to approach these challenges. In 2012, Harvard Medical students formed Students for Global Oncology (S4GO), an adjunct to the larger inter-professional organization Global Oncology. The group had three aims: 1) connect students with mentors in the field, 2) develop novel approaches in global oncology, and 3) disseminate global oncology knowledge. Structure/Method/Design: S4GO has created content and organized events to increase awareness about the global cancer burden, while promoting trainee opportunities in research and practical hands-on projects. Engagement was enhanced by mentorship from more senior students and faculty, to interface with existing global oncology projects. Outcomes & Evaluation: Since 2012, S4GO has grown from two to 68 students. Currently, new chapters at seven other institutions in the US and Canada are being developed. As of October 2014, S4GO has developed a case-based cancer care delivery curriculum with six case-based seminars, along with numerous blog entries and interviews of leading researchers in the field of global oncology, all available on the S4GO website. Students have completed projects in over nine countries and are actively involved in technological and on-the-ground efforts to develop creative solutions and collaborations aimed at easing the global cancer burden. Held in February 2014, the inaugural student-led global oncology symposium involved 200 individuals from across the world, including leaders in global health, pharmaceutical industry, public policy and cancer care. This symposium has been viewed by hundreds online and has fostered novel collaborations and projects focused on enhancing cancer care delivery. Going Forward: In the coming years, S4GO will continue efforts to build awareness and catalyze creative solutions for cancer care in resource-limited settings. These efforts will increase exposure for novel and successful student efforts as well as intra-institutional and intra-professional activity

    ϒ production in p–Pb collisions at √sNN=8.16 TeV

    Get PDF
    ϒ production in p–Pb interactions is studied at the centre-of-mass energy per nucleon–nucleon collision √sNN = 8.16 TeV with the ALICE detector at the CERN LHC. The measurement is performed reconstructing bottomonium resonances via their dimuon decay channel, in the centre-of-mass rapidity intervals 2.03 < ycms < 3.53 and −4.46 < ycms < −2.96, down to zero transverse momentum. In this work, results on the ϒ(1S) production cross section as a function of rapidity and transverse momentum are presented. The corresponding nuclear modification factor shows a suppression of the ϒ(1S) yields with respect to pp collisions, both at forward and backward rapidity. This suppression is stronger in the low transverse momentum region and shows no significant dependence on the centrality of the interactions. Furthermore, the ϒ(2S) nuclear modification factor is evaluated, suggesting a suppression similar to that of the ϒ(1S). A first measurement of the ϒ(3S) has also been performed. Finally, results are compared with previous ALICE measurements in p–Pb collisions at √sNN = 5.02 TeV and with theoretical calculations.publishedVersio

    (Anti-)deuteron production in pp collisions at 1as=13TeV

    Get PDF
    The study of (anti-)deuteron production in pp collisions has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high-energy hadronic collisions. In this paper the production of (anti-)deuterons is studied as a function of the charged particle multiplicity in inelastic pp collisions at s=13 TeV using the ALICE experiment. Thanks to the large number of accumulated minimum bias events, it has been possible to measure (anti-)deuteron production in pp collisions up to the same charged particle multiplicity (d Nch/ d \u3b7 3c 26) as measured in p\u2013Pb collisions at similar centre-of-mass energies. Within the uncertainties, the deuteron yield in pp collisions resembles the one in p\u2013Pb interactions, suggesting a common formation mechanism behind the production of light nuclei in hadronic interactions. In this context the measurements are compared with the expectations of coalescence and statistical hadronisation models (SHM)
    corecore