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The effects of quenched disorder on the critical properties of itinerant quantum antiferromagnets and ferro-
magnets are considered. Particular attention is paid to locally ordered spatial regions that are formed in the
presence of quenched disorder even when the bulk system is still in the paramagnetic phase. These rare regions
or local moments are reflected in the existence of spatially inhomogeneous saddle points of the Landau-
Ginzburg-Wilson functional. We derive an effective theory that takes into account small fluctuations aroundall
of these saddle points. The resulting free energy functional contains a new term in addition to those obtained
within the conventional perturbative approach, and it comprises what would be considered nonperturbative
effects within the latter. A renormalization group analysis shows that in the case of antiferromagnets, the
previously found critical fixed point is unstable with respect to this new term, and that no stable critical fixed
point exists at one-loop order. This is contrasted with the case of itinerant ferromagnets, where we find that the
previously found critical behavior is unaffected by the rare regions due to an effective long-ranged interaction
between the order parameter fluctuations.@S0163-1829~99!01938-4#

I. INTRODUCTION

The influence of static or quenched disorder on the critical
properties of a system near a continuous phase transition is a
very interesting problem in statistical mechanics. While it
was initially suspected that quenched disorder always de-
stroys any critical point,1 this was soon found to not neces-
sarily be the case. Harris2 found a convenient criterion for
the stability of a given critical behavior with respect to
quenched disorder: If the correlation length exponentn
obeys the inequalityn>2/D, with D the spatial dimension-
ality of the system, then the critical behavior is unaffected by
the disorder. In the opposite case,n,2/D, the disorder
modifies the critical behavior.3 This modification may either
~i! lead to a new critical point that has a correlation length
exponentn>2/D and is thus stable,~ii ! lead to an unconven-
tional critical point where the usual classification in terms
of power-law critical exponents loses its meaning, or
~iii ! lead to the destruction of a sharp phase transition. The
first possibility is realized in the conventional theory of
random-Tc classical ferromagnets,1 and the second one is
probably realized in classical ferromagnets in a random
field.4 The third one has occasionally been attributed to the
exactly solved McCoy-Wu model.5 This is misleading, how-
ever, as has recently been emphasized in Ref. 6; there is a
sharp, albeit unorthodox, transition in that model, and it thus
belongs to category~ii !.

Independent of the question of if and how the critical
behavior is affected, disorder leads to very interesting phe-

nomena as a phase transition is approached. Disorder in gen-
eral decreases the critical temperatureTc from its clean value
Tc

0 . In the temperature regionTc,T,Tc
0 the system does

not display global order, but in an infinite system one will
find arbitrarily large regions that are devoid of impurities,
and hence show local order, with a small but nonzero prob-
ability that usually decreases exponentially with the size of
the region. These static disorder fluctuations are known
as ‘‘rare regions,’’ and the order parameter fluctuations in-
duced by them as ‘‘local moments’’ or ‘‘instantons.’’ Since
they are weakly coupled, and flipping them requires chang-
ing the order parameter in a whole region, the local moments
have very slow dynamics. Griffiths7 showed that they lead to
a nonanalytic free energy everywhere in the regionTc,T
,Tc

0 , which is known as the Griffiths phase or, more appro-
priately, the Griffiths region. In generic classical systems this
is a weak effect, since the singularity in the free energy is
only an essential one. An important exception is the
McCoy-Wu model,5 which is a two-dimensional~2D! Ising
model with bonds that are random along one direction, but
identical along the second direction. The resulting infinite-
range correlation of the disorder in one direction leads to
very strong effects. As the temperature is lowered through
the Griffiths region, the local moments cause the divergence
of an increasing number of higher-order susceptibilities,
x (n)5]nM /]Bn (n>2), with M the order parameter andB
the field conjugate to it, starting with largen. Even the av-
erage susceptibility proper,x (1), diverges at a temperature
Tx.Tc , although the average order parameter does not be-
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come nonzero until the temperature reachesTc . This is
caused by rare fluctuations in the susceptibility distribution,
which dominate the average susceptibility and make it very
different from the typical or most probable one.

Surprisingly little is known about the influence of the
Griffiths region and related phenomena on the critical behav-
ior. Recent work8 on a random-Tc classical Ising model has
suggested that it can be profound, even in this simple model
where the conventional theory predicts standard power-law
critical behavior, albeit with critical exponents that are dif-
ferent from the clean case. The authors of Ref. 8 have shown
that the conventional theory is unstable with respect to per-
turbations that break the replica symmetry. By approxi-
mately taking into account the rare regions, which are ne-
glected in the conventional theory, they found a new term in
the action that actually induces such perturbations. In some
systems replica symmetry breaking is believed to be associ-
ated with activated, i.e., non-power-law, critical behavior.
Reference 8 thus raised the interesting possibility that, as a
result of rare-region effects, the random-Tc classical Ising
model shows activated critical behavior, as is believed to be
the case for the random-field classical Ising model,4 although
in the case of the random-Tc model no final conclusion about
the fate of the transition could be reached.

Griffiths regions also occur in the case of quantum phase
transitions~QPTs!, i.e., transitions that occur at zero tem-
perature as a function of some nonthermal control
parameter.9,10 Their consequences for the critical behavior
are even less well investigated than in the classical case, with
the remarkable exception of certain 1D systems. Fisher6 has
investigated quantum Ising spin chains in a transverse ran-
dom field. These systems are closely related to the classical
McCoy-Wu model, with time in the quantum case playing
the role of the ‘‘ordered direction’’ in the latter. He has
found activated critical behavior due to rare regions. This has
been confirmed by numerical simulations.11 Other recent
simulations12 suggest that this type of behavior may not be
restricted to 1D systems, raising the possibility that exotic
critical behavior dominated by rare regions may be generic
in quenched disordered quantum systems, independent of the
dimensionality and possibly also of the type of disorder.

In this paper we consider this problem analytically for
two QPTs inD.1. We first concentrate on a simple model
for a quantum antiferromagnet. Previous work,13 which did
not take into account rare regions, had found a transition
with some surprising properties. One of our goals is to check
whether these results survive, taking into account rare re-
gions. We find that they do not; the previously found critical
fixed point is unstable with respect to the rare regions, and
one finds runaway flow in all of physically accessible param-
eter space. We will discuss possible interpretations of this
result. We then show that the critical behavior of itinerant
quantumferromagnets isnot affected by the rare regions, in
sharp contrast to the antiferromagnetic~AFM! case. A brief
report of some of our results has been given previously in
Ref. 14.

The paper is organized as follows. In Sec. II we derive an
effective action for an itinerant antiferromagnet in the pres-
ence of rare regions. In Sec. III we perform a one-loop renor-
malization group analysis of this action, and show that there
is no stable critical fixed point to that order. In Sec. IV we

perform an analogous analysis for itinerant ferromagnets and
show that the previously found critical fixed point is stable
with respect to the rare region effects. In Sec. V we discuss
our results. Various technical points are relegated to three
appendixes.

II. EFFECTIVE ACTION FOR DISORDERED
ANTIFERROMAGNETS

A. Model

Our starting point is Hertz’s action16 for an itinerant quan-
tum antiferromagnet. It is af4 theory with ap-component
order parameter fieldf whose expectation value is propor-
tional to the staggered magnetization. The bare two-point
vertex function is

G0~q,vn!5t01q21uvnu, ~2.1!

with t0 the mean distance from the mean-field critical point.
q is the wave vector, andvn denotes a bosonic Matsubara
frequency. We measureq and vn in suitable microscopic
units to make them dimensionless. As in Ref. 13, we modify
this action by adding disorder in the form of a ‘‘random-
mass’’ or ‘‘random-temperature’’ term. That is, we add tot0
a random function of position,dt(x), which obeys a distri-
bution with zero mean and varianceD,

^dt~x!&50, ~2.2a!

^dt~x!dt~y!&5Dd~x2y!. ~2.2b!

For the sake of simplicity, we have taken the distribution to
be d correlated. The two-point vertex now reads

G~x2y,t2t8!5G0~x2y,t2t8!1d~x2y!d~t2t8!dt~x!.

~2.3!
Here t denotes imaginary time, andG0(x,t) is the Fourier
transform ofG0(q,vn) in Eq. ~2.1!. The action reads

S@f#5SG@f#1uE dx@f~x!•f~x!#2, ~2.4a!

with the Gaussian part given by

SG@f#5
1

2E dxdyf~x!G~x2y!f~y!. ~2.4b!

Here we have introduced a four-vector notationx[(x,t),
*dx[*dx*0

1/Tdt, and we use units such that\5kB51.
At this point, the conventional procedure would be to in-

tegrate out the quenched disorder by means of the replica
trick.1 This would lead to an effective action that does not
contain the disorder explicitly any longer, and that therefore
does not easily allow for saddle-point solutions that are not
spatially homogeneous. While the effective action would still
be exact, this latter property would make it hard to incorpo-
rate the physics we are concentrating on in this paper. We
will therefore take a different approach, and consider saddle-
point solutions of the model, Eqs.~2.4!, before integrating
out the disorder. Our procedure roughly follows the one by
Dotsenkoet al.8 for classical magnets. As we will see, how-
ever, there are important differences between the classical
and quantum cases.

PRB 60 10 151CRITICAL BEHAVIOR OF DISORDERED QUANTUM . . .



B. Saddle-point solutions

Let us consider saddle-point solutions of Eqs.~2.4! that
are time independent. For simplicity, we also consider a sca-
lar field, p51, which we denote byf(x). It will be obvious
how to generalize the following considerations to the case
p.1. With these restrictions, the saddle-point equation reads

@ t01dt~x!2]x
2#fsp~x!14ufsp

3 ~x!50. ~2.5!

Althoughfsp
(1)(x)[0 is of course always a solution, inhomo-

geneous solutions also exist provided thatdt(x) has
‘troughs’ that are sufficiently wide and deep.17 In Appendix
A we demonstrate this for a one-dimensional toy problem.
We have solved Eq.~2.5! numerically for rotationally invari-
ant potentialsdt(x)5 f (uxu), and have found behavior that is
qualitatively the same as in the one-dimensional model.
Thus, if dt(x) has one sufficiently deep and wide trough,
there will be a solution of Eq.~2.5! that is exponentially
small everywhere except within the trough region, where it
shows a single hump. There are actually two equivalent
single-hump solutions, one positive and the other negative.
We denote the positive one byfsp

(2)(x)[c (1)(x). As is in-
tuitively obvious and demonstrated in Appendix A, it leads
to a lower free energy than the homogeneous solution
fsp

(1)(x)[0. Although in principle any saddle point can be
used as the starting point for a loop expansion, it is therefore
reasonable to assume that the inhomogeneous one will al-
ready incorporate physics that would be much harder to ob-
tain if we expanded about the homogeneous saddle point.

Next consider a potentialdt(x) that contains many
troughs that support an essentially nonzero local order pa-
rameter field. This will result in a saddle-point solution that
contains many regions of local order, which we will refer to
as ‘‘islands.’’ Of course, for an arbitrary potentialdt(x) it is
not possible to solve Eq.~2.5! in closed form. However, as
long as the concentration of the islands is low, as will always
be the case sufficiently deep in the disordered phase~i.e., for
sufficiently larget0), the values offsp outside of the islands
will still be exponentially small. Ifdt has troughs leading to
N islands, which individually would result in positive saddle-
point solutionsc i

(1)(x) ( i 51, . . . ,N), it is therefore a rea-
sonable approximation to write the global saddle-point solu-
tion as a linear superposition of thec i

(1) . For independent
islands, there are actually 2N equivalent saddle points, which
we write as

fsp
(a)~x![F (a)~x!5(

i 51

N

s i
ac i

(1)~x![(
i 51

N

c i~x!, ~2.6!

where a51, . . . ,2N numbers the equivalent saddle points,
and thes i

a are random numbers whose values are either11
or 21. They thus obey a probability distribution

P@$s i
a%#5)

i
p~s i

a!, ~2.7a!

with

p~s!5
1

2
@d~s21!1d~s11!#. ~2.7b!

Alternatively, one can consider thec i(x) random functions
that are equal to either plus or minusc i

(1)(x).
For later reference, let us briefly discuss the effects of a

weak interaction between the islands as a result of the expo-
nentially small overlap between the functionsc i(x) centered
on different islands. One effect will be that the total amount
of the order parameter on each island will not necessarily be
equal to plus or minus the amount resulting from that island
being ideally ordered, but that small deviations from this
amount will be possible. If we still assume that the islands
are statistically independent, we can model this effect by
using a probability distribution for thes i that is given by Eq.
~2.7a! with a distributionp(s) that is a broadended version
of the bimodald distributionp(s) given in Eq.~2.7b!. We
thus generalize Eqs.~2.7a! and ~2.7b! to

P@$s i
a%#5)

i
p~s i

a!. ~2.7c!

For our purposes we will not need to specify the distribution
p(s) explicitly. It will turn out that an interaction between
the islands, no matter how small, leads to new physics com-
pared to a model where these interactions are neglected.

We also note that the islands will have some dynamics,
both due to interactions between the islands and due to in-
teractions between an island and its immediate neighbor-
hood. In principle, one could try to build this effect into the
saddle-point approximation by looking for time-dependent
saddle points. However, this dynamics is expected to be very
slow due to the inertia of the islands. Moreover, the zero-
frequency component in a frequency expansion is expected
to yield the dominant effect. We therefore restrict ourselves
to static saddle points.

C. Partition function for a given disorder realization

Of the 2N saddle-point solutionsF (a)(x) discussed in the
previous subsection, let us pick one, say,F (1), to expand
about:

f~x!5F (1)~x!1w~x!. ~2.8a!

Then the partition function can be written as

Z@dt~x!#5E D@w~x!#e2S[F(1)(x)1w(x),dt(x)] , ~2.8b!

where we showdt(x) explicitly as an argument to emphasize
that we are still working with a fixed realization of the dis-
order. Equation~2.8b! is exact as long as the integral extends
over all fluctuationsw(x) of the field configuration. How-
ever, in practice the integral overw(x) cannot be performed
exactly, and in a perturbative treatment one restricts oneself
to small deviationsw(x) from the chosen saddle point. Typi-
cal pairs of saddle points picked from the 2N F (a) represent
field configurations that are globally very different. They will
thus be far apart in configuration space, with large energy
barriers between them.~We will justify this statement in Sec.
V A 2 below.! Expanding about one of the saddle points, as
in Eqs. ~2.8!, is therefore not expected to yield a good rep-
resentation of the partition function if one evaluates the func-
tional integral in Eq.~2.8b! perturbatively. On the other
hand, the same argument suggests that we can simply sum
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the contributions toZ obtained by expanding aboutall of the
2N saddle points, provided that we restrict ourselves to small
fluctuations about each saddle point,

Z@dt~x!#' (
a51

2N

E
,

D@w~x!#e2S[F(a)(x)1w(x),dt(x)] .

~2.9!

Here *, indicates an integration over small fluctuations
only. Apart from a normalization factor, this procedure
amounts to an arithmetic average over the perturbative con-
tributions coming from the vicinities of all saddle points.
This average is our approximative way of taking into account
nonperturbative effects.

Since we are interested in the effects of fluctuations about
the saddle points, we next subtract the saddle point action
from the exponent in Eq.~2.9!.18 That is, we write

Z@dt~x!#'(
a
E

,
D@w~x!#e2DS[F(a)(x),w(x),dt(x)] ,

~2.10!

where

DS@F (a),w,dt#[S@F (a)1w,dt#2S@F (a),dt#5S@w~x!#

14uE dxw3~x!F (a)~x!

16uE dxw2~x!F (a)~x!2. ~2.11!

So far we have implicitly assumed that there is no inter-
action between the islands. In reality, there will be a small
interaction, one effect of which will be to replace the bimo-
dal distribution, Eqs.~2.7a! and ~2.7b!, by the broadended
distribution given in Eq.~2.7c!. The sum overa in Eq. ~2.10!
is then replaced by an integral over thes i

a , weighted by the
distributionp(s). The partition function can now be written
as

Z@dt~x!#'E D@w~x!#e2$S[w(x)] 1dS[w(x)] %, ~2.12a!

with the correction to the action,dS, given by

e2dS[w(x)]

5E )
i 51

N

ds i)
j

p~s j !

3expS 24uE dxw3~x!(
i

s ic i
(1)~x! D

3expS 26uE dxw2~x!(
i j

s is jc i
(1)~x!c j

(1)~x! D .

~2.12b!

As mentioned previously, it is crucial to incorporate a
small interaction between the islands. Indeed, if we used the
distribution function, Eqs.~2.7!, for thes i that is appropriate
for noninteracting islands, then we could do thes integration
in Eq. ~2.12b! exactly. As we will show in Sec. III, the re-

sulting action would not lead to new physical effects com-
pared to Ref. 13. Apart from the broadening of the distribu-
tion, there are other, similar effects of the island-island
interaction that we will neglect. For instance, in the second
exponent on the right-hand side of Eq.~2.12b!, the absence
of any overlap betweenc i

(1) and c j
(1) for iÞ j makes the

spatial integral in that term vanish unlessi 5 j . This is no
longer true for interacting islands. However, we will neglect
this effect and still take this term to be proportional tod i j .
Equation~2.12b! can then be written as

dS@w~x!#52(
i

lnK expS 24uE dxw3~x!c i
(1)~x!s i D

3expS 26uE dxw2~x!@c i
(1)~x!#2s i

2D L .

~2.12c!

Here^•••& denotes an average over thes with respect to the
broadened bimodal distributionp(s). Thes average is car-
ried out by means of a cumulant expansion in powers of our
order parameter fluctuationsw(x). To the orderw4 we obtain

dS@w~x!#56uE dxw2~x!(
i

@c i
(1)~x!#2^s i

2&

14uE dxw3~x!(
i

c i
(1)~x!^s i&

218u2E dxdyw2~x!w2~y!

3(
i

@c i
(1)~x!#2@c i

(1)~y!#2~^s i
4&2^s i

2&2!.

~2.13!

Now ^s i&50, ^s i
2&.0, and^s i

4&2^s i
2&2[ci.0. The last

relation is only valid for a broadened distributionp(s)
which arises from interactions between the islands. For the
original distributionp(s), ci50, and so theO(w4) term
would vanish. If we collect all contributions to the action for
one particular disorder configuration, we obtain

S@w~x!#1dS@w~x!#5
1

2E dxdyw~x!G~x2y!w~y!

1uE dxw4~x!

118u2E dxdyw2~x!w2~y!

3(
i

ci@c i
(1)~x!c i

(1)~y!#2.

~2.14!

Here we have used the fact that the first term in Eq.~2.13!
only renormalizes the random-mass term in the Gaussian ac-
tion. We will show in Sec. III that truncating the action at
O(w4) is justified since all higher-order terms are irrelevant
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~in a power-counting sense! with respect to both the Gauss-
ian fixed point and the antiferromagnetic fixed point found in
Ref. 13.

D. Effective action

So far we have considered one particular realization of the
disorder. In order to derive an effective action we now need
to perform the disorder average. It is important to remember
that the Landau functional, Eq.~2.14!, depends on the disor-
der in two different ways: explicitly through the random
mass in the Gaussian action and implicitly through the
saddle-point solutionsc i

1(x) that depend ondt(x).
The quenched disorder average overdt(x) is performed

via the replica trick,1 which is based on the identity

$ ln Z%dt5 lim
n→0

$Zn%dt21

n
. ~2.15!

Here$•••%dt denotes the disorder average. This results in an
effective actionSeff which is defined by

$Zn%dt5E )
a51

n

D@wa~x!#H expS 2(
a

$S@wa~x!#

1dS@wa~x!#% D J
dt

[E )
a51

n

D@wa~x!#e2Seff[w
a(x)] .

~2.16!

In the absence ofdS, carrying out the disorder average
yields the usual terms that are familiar from the conventional
theory. Up toO(w4) they are

1

2 (
a

E dxdywa~x!G0~x2y!wa~y!1u(
a

E dx@wa~x!#4

2D(
a,b

E dxdtdt8@wa~x,t!#2@wb~x,t8!#2. ~2.17!

Taking into account the additional termdS@wa(x)# is more
subtle since the functionsc i(x) are implicit functions of
dt(x). We handle this problem by means of a cumulant ex-
pansion. To lowest order, the contribution ofdS to the ef-
fective action is just the disorder average ofdS,

$dS%dt5wE dxdyw2~x!w2~y!D isl
(2)~x,y!, ~2.18a!

wherew}u2, and the correlation function

D isl
(2)~x,y!5H(

i
ci@c i

(1)~x!c i
(1)~y!#2J

dt

~2.18b!

essentially describes the probability forx andy to belong to
the same island. The properties of these correlation functions
depend on the precise nature of the disorder. If the micro-
scopic disorderdt(x) is short range correlated, as we have
assumed in our model, then the island size distribution will
generically fall off exponentially for large sizes. In this case
the correlation functionD isl

(2) is also short-ranged in space.
Keeping only the leading term in a gradient expansion, we

can then replace it by a spatiald function. The case of an
island size distribution that has a power-law tail~e.g., due to
long-range correlations in the microscopic disorder! is dis-
cussed in Appendix B.

Collecting all contributions to the effective actionSeff up
to O(w4), absorbing a constant intow, and restoring the
vector nature of the order parameter field, we finally obtain

Seff@wa~x!#5
1

2 (
a

E dxdyG0~x2y!wa~x!•wa~y!

1u(
a

E dxdt@wa~x,t!•wa~x,t!#2

2(
a,b

~D1wdab!E dxdtdt8

3@wa~x,t!•wa~x,t!#@wb~x,t8!•wb~x,t8!#.

~2.19!

The w term is generated by taking into account the inhomo-
geneous saddle points. A perturbative expansion about the
homogeneous saddle point, as was performed in Ref. 13,
misses this term. It has the time structure of the random-mass
or D term, and the replica structure of the quantum fluctua-
tion or u term. We will further discuss its physical meaning
in Sec. V A. In the following section we will show that the
critical fixed point found in Ref. 13 is unstable with respect
to this new term in the action.

III. RENORMALIZATION GROUP ANALYSIS

A. Tree-level analysis

Let us first justify our truncation of the Landau expansion
in Sec. II by showing that all terms of higher than quartic
order inw are irrelevant~in the renormalization group sense!
by power counting with respect to the critical fixed point of
Ref. 13. To this end, we analyze the effective actionSeff , Eq.
~2.19!, at the tree level.

Let us denote the scale dimension of any quantityQ by
@Q#, and define the scale dimension of a lengthL to be
@L#521. The scale dimension of the imaginary time is
@t#52z, which defines the dynamical critical exponentz.
We first analyze the Gaussian fixed point. From the structure
of the two-point vertex functionG0 given in Eq.~2.1!, we see
that vn scales likeq2. This impliesz52. The scale dimen-
sion of the fieldw is found ~from the requirement that the
action must be dimensionless! to be@w(x)#5D/2. The scale
dimensions of the coefficients of the terms ofO(w4) in Eq.
~2.19! are found to be@u#522D, and @D#5@w#542D.
Thus,u is irrelevant with respect to the Gaussian fixed point
as long asD.2, while D andw are relevant forD,4. The
Gaussian fixed point is therefore unstable, and we will have
to perform a loop expansion close toD54 in the next sub-
section.

We now show that all terms ofO(w6) and higher are
irrelevant with respect to the Gaussian fixed point. First of
all, there are the conventional terms of the schematic form

u2mE dxw2m~x!, ~3.1!
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with coupling constantsu2m (u4[u). These are irrelevant
since @u2m#522(m21)D,0. In addition to these terms,
the cumulant expansion of Eq.~2.12c! generates higher-order
terms with more time integrations than the conventional
terms for a given power ofw. For instance, atO(w6) we
have two terms

8u2E dxdyw3~x!w3~y!(
i

c i
(1)~x!c i

(1)~y!^s i
2&,

~3.2a!

and

236u3E dxdydzw2~x!w2~y!w2~z!(
i

~c i
(1)~x!!2

3@c i
(1)~y!#2@c i

(1)~z!#2~^s i
6&23^s i

4&^s i
2&16^s i

2&3!.

~3.2b!

Upon averaging over the disorder these terms become

v6E dx1dx2w3~x1!w3~x2!Cisl
(2)~x1 ,x2! ~3.3a!

and

w6E dx1dx2dx3w2~x1!w2~x2!w2~x3!D isl
(3)~x1 ,x2 ,x3!,

~3.3b!

respectively, withv6}u2, w6}u3. The correlation functions
Cisl

(2)(x,y) and D isl
(3)(x,y,z) are defined analogously to

D isl
(2)(x,y) in Eq. ~2.18b!, and are related to the probability

for x,y andx,y,z, respectively, to belong to the same island.
We again concentrate on the generic case where the island
size distribution falls of exponentially for large islands~for a
discussion of other cases, see Appendix B!. In this case both
correlation functions are short ranged and can be localized
for power counting purposes. This effectively leaves only
one spatial integral in Eqs.~3.3a! and ~3.3b!. Therefore, the
scale dimensions of the coefficients are@v6#52(22D) and
@w6#52(32D). Consequently, both terms are irrelevant
with respect to the Gaussian fixed point nearD54.

More generally, we obtain from Eq.~2.12c! terms that
contain powers ofw3, terms that contain powers ofw2, and
mixed terms that contain bothw3 and w2. For power-
counting purposes, the most relevant term for a fixed power
of w is the one with the most time integrations. For even
powers ofw, these are the terms

w2mE dx1•••dxmw2~x1!•••w2~xm!D isl
(m)~x1 , . . . ,xm!.

~3.4!

Localizing the correlation functionD (m) we find for the scale
dimension of the coupling constant@w2m#52m2(m21)D.
Terms with odd powers ofw are always less relevant than
the preceding term of even order. We conclude that all terms
of higher than quartic order are irrelevant with respect to the
Gaussian fixed point nearD54.

So far we have determined the scale dimensions with re-
spect to the Gaussian fixed point. At the nontrivial critical
fixed point discussed in Ref. 13 the anomalous dimension of

the field w is h501O(e2) since, as in the ordinaryf4

theory, there is no wave function renormalization at one-loop
order. This implies that all results on the irrelevancy of the
terms of orderw6 and higher carry over from the Gaussian
fixed point to the nontrivial critical fixed point found in
Ref. 13.

B. Perturbation theory, and flow equations

In the last subsection we have shown that the Gaussian
fixed point is unstable forD,4. We must therefore carry out
a loop expansion for the effective action, Eq.~2.19!. To con-
trol the perturbation theory we considerD542e spatial di-
mensions andet time dimensions.19 This leads to the re-
placement of*dt by *dttet21. At the Gaussian fixed point
the scale dimension of the fieldw is now @w#5(d1zet
22)/2. In the same vein the scale dimensions ofu, D, andw
are @u#5e2zet , @D#5e, and @w#5e, respectively. The
perturbation theory becomes a double expansion ine andet .

To obtain the renormalization group~RG! flow equations,
we perform a frequency-momentum shell RG procedure.16

The diagrams that contribute to the renormalization of the
coupling constantsu, D, and w are shown in Fig. 1. To
one-loop order, we obtain the following flow equations:

du

dl
5~e22et!u24~p18!u2148uD, ~3.5a!

dD

dl
5eD132D228~p12!uD18S p

Tet
12D Dw,

~3.5b!

dw

dl
5ew1

4p

Tet
w228~p12!uw124~2D2w!w18w2.

~3.5c!

The masst of the two-point vertex, which describes the dis-
tance from the critical point, is of course also renormalized.
However, since we are interested in the stability of a critical
fixed point, it suffices to consider the flow on the critical
surface. The factors ofT2et in Eqs.~3.5! arise from the fact
that some diagrams that contain thew vertex lead to Matsub-
ara frequency sums without an accompanying temperature
factor. Since the critical surface for the quantum phase tran-
sition is defined byT50 in addition to t50, the natural
coupling constant for theT50 flow is w̄5wT2et. Putting
T50,20 the flow equations can then be rewritten in the form

FIG. 1. The three diagram structures that contribute to the flow
equations shown in Eqs.~3.5!. The dashed lines stand for any of the
vertices whose coupling constants areu, D, or w.
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du

dl
5~e22et!u24~p18!u2148uD, ~3.6a!

dD

dl
5eD132D228~p12!uD18pDw̄ , ~3.6b!

dw̄

dl
5~e22et!w̄14pw̄228~p12!uw̄148Dw̄.

~3.6c!

C. Fixed points and their stability

The flow equations~3.6c! possess eight fixed points. The
fixed-point values of the coupling constants and the corre-
sponding eigenvalues of the linearized RG transformation
are listed in Table I. Four of the fixed points~Nos. 1–4 in
Table I! have a zero fixed-point value ofw̄, w̄* 50. These
are the fixed points studied before in Ref. 13. The other four
fixed points havew̄* Þ0.

Let us first consider fixed point No. 4. This is the critical
fixed point that was found within the conventional
approach.13 We find that the local moments, represented by
thew term, render this fixed point unstable forp,4, since in
this case the third eigenvaluelw is positive. However, for
p.4 thew term is irrelevant with respect to this fixed point,
and the fixed point is stable for 4,p,pc . To one-loop or-
der and fore5et , pc516.13

A stability analysis for the new fixed points shows that
they are all unstable forp,4 with the exception of No. 8. At
this fixed point,w has a negative value, while Eq.~2.13!,
with reasonable assumptions about the distributionp(s),
yields a positive value for the bare value ofw. Since the
structure of the flow equations does not alloww to change
sign, we conclude that this fixed point is unphysical for ge-
neric realizations of the disorder. It is interesting to note,

however, that fixed point No. 8 is stable against replica sym-
metry breaking~see Appendix C!.

For p,4 and to one-loop order in our double expansion
in powers ofe and et , there is thus no stable fixed point.
Consistent with this, a numerical solution of the flow equa-
tions ~3.6c! shows runaway flow in all of physical parameter
space. We will discuss the physical meaning of this result in
Sec. V below.

IV. CASE OF ITINERANT FERROMAGNETS

In Ref. 15 a generalized Landau-Ginzberg-Wilson~LGW!
functional for the ferromagnetic transition in a disordered
itinerant electron system was derived starting from a fermi-
onic description. The effects of rare regions were not explic-
itly considered in this work. Here we show that although the
rare regions were neglected in the explicit calculations in that
paper, the effective field theory derived in Ref. 15 still con-
tains these effects. We will further show that taking them
into account does not change the previous conclusions.

We first briefly recall the effective action that was derived
in Ref. 15. In the long-wavelength and low-frequency limit,
the replicated action is given by

Seff,15
1

2 (
a

E dx1dx2G0~x12x2!Ma~x1!•Ma~x2!

1(
a

E dx1dx2dx3dx4u4~x1 ,x2 ,x3 ,x4!

3@Ma~x1!•Ma~x2!#@Ma~x3!•Ma~x4!#

2D(
a,b

E dxdtdt8@Ma~x,t!#2@Mb~x,t8!#2.

~4.1!

HereM is the order parameter field whose expectation value
is the magnetization, andu andD are coupling constants that

TABLE I. Fixed points~FPs! of the flow equations~3.6c! and the eigenvalues of the corresponding linearized RG transformation.p is the
number of order parameter components.l1,2 are the eigenvalues in the absence ofw, andlw is the additional eigenvalue.A, B, C, andD are
defined asA5(3e24et)p116et , B516(p21)(e14et)@(42p)e14(p12)et#, C5(162p)e14(p24)et , andD5(102p)(p18)(e
14et)@(p24)e124)et].

FP No. FP values Eigenvalues
u* D* w* l1 l2 lw

1 0 0 0 e22et e e22et

2 e22et

4~p18!

0 0 2(e22et) 8~p14!et2~p24!e

p18

~p24!~e22et!

p18
3 0 2e/32 0 2et2e/2 2e 2et2e/2
4 ~e1et!

16~p21!

~42p!e14~p12!et

64~p21!

0 2A1AA22B

p21

2A2AA22B

p21

~42p!e14~42p!et

4~p21!

5 0 0 2(e22et)/4p e/42et/2 4et2e 2(e22et)
6 e22et

4~p18!

0 ~p24!~e22et!

4p~p18!

2(e22et) 2~p14!2et2~p24!e

p18

~p24!~e22et!

p18
7 0 (4et2e)/64 2(4et1e)/16p et1e/4 2e 2et2e/2
8 e14et

8~102p!

~p24!e124et

32~102p!

~p24!~e14et!

8p~102p!

2C1AC22D

p21

2C2AC22D

2~102p!

~p24!~e14et!

2~102p!
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in general are wave number and frequency dependent. An
important point is that these coupling constants in general do
not exist in the limit of zero frequencies and wave numbers;
i.e., the effective action describes a nonlocal field theory.
This is because in the process of deriving a LGW functional
that depends only on the order parameter field, soft~viz.,
diffusive! fermionic degrees of freedom have been integrated
out. In writing Eq. ~4.1! we have used that the coupling
constantD is finite in the long-wavelength limit, so that it
can be treated as a number.u4, on the other hand, is singular
in this limit; see Eq.~4.3! below. For small wave numbers
the Fourier transform of the two-point vertexG0 is given by

G0~q,vn!5t01u2~q!1uvnu/q2, ~4.2a!

with

u2~q!5u2
(D22)uquD221u2

(0)q2. ~4.2b!

Here u2
(D22) and u2

(0) are finite numbers. Note that forD
,4 ~in particular, in the physical dimensionD53), the first
term in Eq.~4.2b! dominates the second one asq→0. u4, in
wave number space at zero frequency, is schematically given
by

u4~q→0!5u4
(D26)uquD261O~ uquD24!; ~4.3!

i.e., u4 diverges forD,6. The singularities in the wave
number dependences ofu2 andu4 mean that the field theory
is nonlocal. As mentioned above, their physical origin are
diffusive fermionic particle-hole excitations that were inte-
grated out in deriving Eq.~4.1!.

Next we argue that in at least one well-defined physical
situation, it is easy to uncover the effects of rare regions that
are implicit in Eq.~4.1!. The basic argument is that on length
scales small compared to the elastic mean free pathl, the
field theory is effectively local. This implies that as long as
the local moments or instantons decay on a scalel, l , the
techniques discussed in Sec. II can be used to include the
effects of these inhomogeneous saddle points on the final
long-wavelength theory. Further we will show that the
quenched randomness that leads to these local moments is
implicitly contained already in the last term in Eq.~4.1!. To
this end we first note~cf. Ref. 15 and below! that theexact
critical behavior near the ferromagnetic transition can be de-
termined from Eq.~4.1!. Second, we partially undo the rep-
lica trick in Eq.~4.1! by writing the logarithm of the partition
function, or the free energy, as Eq.~2.15! with Z on the
right-hand side given by

Z5E D@M ~x!#exp$2S@M ~x!,dt~x!#%, ~4.4a!

with

S@M ~x!,dt~x!#5
1

2E dx1dx2G~x12x2!M ~x1!•M ~x2!

1E dx1•••dx4u4~x1 ,x2 ,x3 ,x4!

3@M ~x1!•M ~x2!#@M ~x3!•M ~x4!#.

~4.4b!

G(x) is given by

G~x!5G0~x!1dt~x!, ~4.5!

with G0 from Eq. ~4.2a!. dt(x) in Eqs. ~4.4! is a random
function of position that is Gaussian distributed with the first
two moments given by Eqs.~2.2!. It trivally follows that Eqs.
~2.15!, ~4.3!–~4.5!, and~2.2! are equivalent to Eq.~4.1!.

The arguments given in Sec. II for the AFM case apply
equally well to the action given by Eq.~4.4b!. To make this
more precise let us consider the nonlocalities. In terms of
scaled variables, Eq.~4.2b! for u2(q) can be written to low-
est order in the disorder as

u2~q!5u2
(0)F S q

kF
D 2

1
c

kFl S uqu
kF

D D22G , ~4.6!

with kF the Fermi wave number,l the elastic mean free path,
and c an interaction-dependent constant that is at most of
order unity. In general the expansion implied by Eq.~4.6!
assumes thatuqu!kF . In terms of length scales letl
;1/uqu be the scale over which the order parameter varies
and lF;kF

21 the Fermi wavelength. Further, to be specific
we consider the physical dimensionD53. The analytic,
square gradient, term in Eq.~4.6! then dominates the second
term whenl! l . That is, the nonlocality in Eq.~4.6! is irrel-
evant when spatial scales shorter than a mean free path are
considered. ForlF!l! l we then have

u2~q!.u2
(0)S q

kF
D 2

. ~4.7!

Note that for this argument to be valid we needlF / l
'1/kFl !1; i.e., weak disorder is required. Similarly,u4 in
Eq. ~4.3! can be replaced by a constant whenlF!l! l . The
net result is that when the local moments vary on a length
scale smaller thanl, they can be described by a local field
theory analogous to the one discussed in Sec. II even though
the long-wavelength theory is nonlocal. If we assume, as we
did in the antiferromagnetic case in the previous section, that
the island distribution falls off exponentially for large island
sizes, this will always be true for sufficiently small disorder.

With the above ideas and the techniques developed in
Sec. II, the final long-wavelength theory to descibe the fer-
romagnetic phase transition, explicitly including the effects
of rare regions, is determined by the action

Seff5Seff,11dSeff , ~4.8a!

with Seff,1 given by Eq.~4.1! and

dSeff52w(
a

E dxdtdt8@Ma~x,t!•Ma~x,t!#

3@Ma~x,t8!•Ma~x,t8!#, ~4.8b!

wherew is a finite constant.
Power counting immediately reveals that the coupling

constantw, just like D, is an irrelevant operator with respect
to the Gaussian fixed point discussed in Ref. 15. The rare
regions therefore do not change the critical behavior in this
case. The physical reason for this is the effective long-range
interaction between the order parameter fluctuations that is
described by theuquD22 term in Eq.~4.2b!. This stabilizes
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the Gaussian fixed point by suppressing all fluctuations, in-
cluding the static disorder fluctuations resonsible for the lo-
cal moments.

V. DISCUSSION AND CONCLUSION

In this section, we conclude by discussing the results ob-
tained in the previous sections.

A. General considerations

We begin our discussion by considering the physical un-
derpinnings of some general aspects of our technical proce-
dure.

1. Local moments and annealed disorder

Let us first of all give a simple physical interpretation of
the w term in the effective action, Eq.~2.19!, which is the
most important of the contributions that reflect the existence
of rare regions and local moments. Since the local moments
are self-generated by the electronic system, in response to the
potential created by the quenched disorder, they are an inte-
gral part of the system and in equilibrium with all other
degrees of freedom. In our approximation, which takes into
account only the static local moment fluctuations, the effect
of the rare regions therefore amounts to the existence of
static, annealed disorder. Indeed, a straightforward generali-
zation of Eq.~2.10! is to integrate over a manifold of saddle
points F(x), weighted with an appropriate distribution
P@F(x)#,

Z'E D@F~x!#P@F~x!#E
,

D@w~x!#e2DS[F(x),w(x),dt(x)] ,

~5.1!

which makes obvious the annealed-disorder character of the
average over the saddle points. The detailed result of the
integration over the saddle points will of course depend on
the distributionP, which in turn depends on the microscopic
details of the disorder realization in the system. However,
any physically reasonable distribution will lead in particular
to a term in the effective action that has the structure of thew
term in Eq.~2.19!. Since the saddle points are separated by
large energy barriers in configuration space~see Sec. V A 2
below!, this term clearly cannot be obtained by perturba-
tively expanding about the trivial homogeneous saddle point
as is done in the conventional theory. Thus, our method ap-
proximately takes into account what one would call ‘‘non-
perturbative’’ effects in the usual approach.

It is important to note that the new term in the action, Eq.
~2.19!, differs from the usual quantum fluctuation oru term
only in its time structure. In the classical limit, therefore,w
just renormalizesu, decreasing its bare value. This is indeed
well known to be the only effect of static annealed disorder
in classical systems. In their analysis of classical magnets,
the authors of Ref. 8 therefore considered a more elaborate
scheme for doing the sum over saddle points in Eq.~2.10! or
the integral in Eq.~5.1! that leads to a term that breaks the
replica symmetry. Our way of approximating that integral
can be considered as a zeroth-order step in the approximation
scheme of Ref. 8. In the quantum case, the time structure
results in this zeroth step already giving a nontrivial result,

and in this sense quantum systems are more sensitive to rare-
region effects than classical ones. The physical meaning of
replica symmetry breaking in this context is not quite clear.
However, in the quantum case it is not necessary to enter
into this discussion. The AFM fixed point is unstable already
under the effects considered above, and no new fixed point
exists. Considering replica symmetry breaking in addition to
our effect would not change this conclusion. In the FM case,
it turns out that the previously found Gaussian fixed point is
stable against replica symmetry breaking as well as against
the quantum effect, as we will discuss in more detail below.

2. Energy barriers between saddle points

A question that arises in connection with Eq.~2.9! or ~5.1!
is whether it is really true that there are large energy barriers
between the various saddle-point configurations, as our ap-
proximation for the partition crucially depends on this as-
sumption. Let us first consider the case of the Ising model
(p51), for which we performed the explicit derivation in
Sec. II. Suppose we have two saddle points that differ only
by the sign of the order parameter on one particular island. In
order to turn one of these spin configurations into the other,
we need to flip all of the spins on that island.~For simplicity,
we refer to the order parameter field as ‘‘spins.’’! In order to
do so, one must go through an intermediate state with a
domain wall across the island. The energy of that domain
wall can be estimated from the squared gradient term in the
free energy, integrated over the island,J*dx@¹f(x)#2, with
J the coupling between the spins. The thickness of the do-
main wall is a microscopic lengtha, and hence the energy of
the domain wall, or the energy barrier between the two
saddle points, is proportional toJLD21a/a25JLD21/a, with
L the linear size of the island. In the case of a continuous
spin model (p.1) an analogous argument holds, except that
now all length scales are of orderL.1 This leads toJLD22 for
the energy of a domain wall. ForD.2, there is thus only a
quantitative difference between the Ising case and the con-
tinuous spin case.

In either model, the domain wall energy will have to be
multiplied by the number of islands by which two typical
saddle points differ. For the Ising case, let us considerN
islands, with 2N saddle points and 2N21(2N21) pairs of
saddle points. The probability distribution$pN(n)%, for a pair
of saddle points to haven islands that are different is easily
found to be

pN~n!5
1

2N21
S N

n D . ~5.2a!

For largeN, this becomes a Gaussian distribution with mean
N/2 and varianceAN/2,

pN→`~n!5
2

A2pN
e22(n2N/2)2/N. ~5.2b!

One expects this to be true for the continuous spin case as
well, although the statistical analysis becomes much more
involved in that case. The miscroscopic energy of a domain
wall thus gets multiplied by a macroscopic number, leading
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to energy barriers between almost all pairs of saddle points
that go to infinity in the thermodynamic limit. This justifies
our approximation.

Finally, we note that our considerations maximize, and
probably overestimate, the effects of local moments or
disorder-induced instantons. The discussion above seems to
imply an exponential number of saddle point solutions that
are unrelated by symmetries, with barriers between them that
approach infinity in the bulk limit. This in turn implies an
exponential number of thermodynamic states or a finite com-
plexity. Such a proposition is controversial in other contexts,
e.g., for spin glasses. However, in our considerations we
have effectively neglected the interactions between the local
moments. One anticipates these interaction to correlate and
weaken the rare regions. Indeed, in Ref. 23 it was argued that
long-range interactions that arise from the itinerant nature of
the electrons quench most of the local moments. If this hap-
pens in the systems we consider, then we likely overestimate
the number of distinct thermodynamic states. It is also pos-
sible that our theory is valid only in an intermediate time
region, and that the interactions between the local moments
must be taken into account in the limit of asymptotically
long times.

3. Nature of the local-moment phase

Another point we have not yet addressed is the physical
nature of the phase that is induced by the presence of the
local moments. In order to show that we are dealing with a
Griffiths phase, let us consider the local-moment contribu-
tion to the order parameter susceptibility,xLM . Let us adopt
a ferromagnetic language for simplicity, and denote the mag-
netic moment on the island numberi by Mi . Then we have

xLM5H 1

(
i

Vi

E
0

1/T

dt(
i j

@^Mi~t!M j~0!&2^Mi&^M j&#J
dt

,

~5.3!

where^•••& denotes a thermodynamic average. Since there
is no overall magnetization,( i^Mi&50, and in our saddle-
point approximation the island magnetization is static. This
yields

xLM5H 1

(
i

Vi

1

T (
i j

^MiM j&J
dt

5
const

T
, ~5.4!

where the constant is given by$( i^Mi
2&/( iVi%dt . We see

that the order parameter susceptibility diverges forT→0
whenever there are islands, and in our simple saddle-point
approximation the divergence takes the form of a Curie law.
Our saddle point thus really describes a Griffiths phase.

4. Finiteness of the free energy

As a final general point, let us again consider the effective
action, Eq.~2.19!, which determines the free energy. Since
thew term and theu term have the same structure except for
an extra time integral in the former, it seems as if thew term
contributes a term to the free energy that diverges as the
temperature goes to zero. One has to keep in mind, however,

that Eq.~2.19! represents a Landau expansion that has been
truncated atO(w4). It is easy to see that higher-order terms
in the Landau expansion lead to even more strongly diver-
gent contributions to the free energy; see Eq.~3.4!. This
simply means that the loop expansion for the free energy of
a quantum system with static annealed disorder is singular,
and a resummation to all orders would be necessary to obtain
a finite result. From a RG point of view, which holds that the
higher-order terms in the Landau expansion are irrelevant,
the solution of this paradox lies in the fact that, if a fixed
point existed, it would bew̄ that has a finite fixed-point
value, notw. Sincew5w̄T ~for the physical caseet51),
this ensures that the fixed-point Hamiltonian has a finite free
energy.

B. Results for the AFM case

As we have shown in Sec. III and reiterated above, taking
into account the rare regions in the AFM case destroys the
stability of the fixed point found in Ref. 13, and one finds
runaway flow in all of the physically accessible parameter
space. Three possible interpretations of this result are that~i!
there is no transition to a state with long-range order,~ii !
there is a transition, but the corresponding fixed point is in-
accessible by perturbative RG techniques, or~iii ! there is a
fluctuation-induced first-order transition~which causes the
runaway flow!. The last conjecture can be checked by calcu-
lating the free energy to one-loop order and then explicitly
verifying whether it has a double-minimum structure as a
function of the order parameter. We have performed such a
calculation,21 and found that this is not the case. This rules
out scenario~iii !.

On the basis of our results, we cannot decide between
scenarios~i! and ~ii !. Scenario~i! would imply that arbi-
trarily weak disorder necessarily destroys quantum AFM
long-range order. This is an unlikely proposition, but it can-
not be ruled out at present. The alternative is scenario~ii !,
i.e., the existence of a nonperturbative fixed point. The na-
ture of such a fixed point, if it exists, isa priori unclear. The
analogies with 1D systems mentioned in the Introduction, as
well as Ref. 12, suggest that an unconventional infinite-
disorder fixed point with activated scaling is a possible inter-
pretation of the runaway flow. However, there also could be
a conventional fixed point that is not accessible by our meth-
ods. In this context it is interesting to note that the casep
.4 discussed in Sec. III C provides an example of a stable
conventional fixed point that describes a transition with
power-law critical behavior in the presence of rare regions.

Let us also come back to the fact that in Sec. III we found
a stable fixed point~No. 8 in Table I! with w̄* Þ0. As was
pointed out in Sec. III C, for generic realizations of the dis-
order, which lead to a positive bare value ofw, this fixed
point is unphysical since it hasw̄* ,0. However, mathemati-
cally one can havew,0 for certain choices of the distribu-
tion P@$s i

a%# in Sec. II that are more general than Eq.~2.7c!.
This leaves open the possibility that at least in some systems
there is a stable, conventional critical fixed point that is ac-
cessible with our method. We note that this fixed point is
stable against replica symmetry breaking; see Appendix C.
This is in contrast to the case of classical magnets,8 where all
fixed points are unstable against replica symmetry breaking,
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and reminiscent of the result of Readet al.22 on quantum
spin glasses, where the quantum model was also found to be
more stable against replica symmetry breaking than its clas-
sical counterpart. The technical reason for this enhanced sta-
bility is very similar to the point discussed at the end of Sec.
V A, namely, that the parameter that would induce replica
symmetry breaking appears asT times a finite fixed-point
value, and hence vanishes at the quantum critical point.

C. Results for the FM case

For itinerant quantum ferromagnets, we have found that
the rare regions do not affect our previous results.15 The
physical reason for this is the long-range interactions be-
tween the spin fluctuations in these systems. They are in-
duced by soft modes in the itinerant electron system and
stabilize the Gaussian critical behavior against fluctuations,
including the static disorder fluctuations that lead to local-
moment formation. A crucial point for our conclusion is the
survival of these long-range interactions in the presence of
local moments, so it is worth discussing this in some detail.

The derivation of the long-range interaction15 shows that
its origin is soft spin-triplet particle-hole excitations in the
electron system. An obvious question is whether local mo-
ments act effectively as magnetic impurities that give these
soft modes a mass. If this were the case, then the singular
wave number dependencesuqud22 anduvnu/q2 in the Gauss-
ian vertex, Eq.~4.2a!, would be cut off and the ferromagnetic
effective action would have the same structure as the antifer-
romagnetic one. The answer to this question is not obvious
since the local moments are self-generated, and thinking
about them as analogous to externally introduced magnetic
moments can be misleading. This is underscored by the fact
that the rare-region–local-moment physics enters the theory
in the form of annealeddisorder, as we have seen in Sec.
V A above. In our derivation of the effective action, Sec. IV,
the wave number singularities are not cut off. The physics
behind this is that both singularities are consequences of spin
diffusion, which in turn is a consequence of the spin conser-
vation law. The rare regions ultimately derive from a spin-
independent disorder potential, which clearly cannot destroy
spin conservation. The long-range interactions between the
spin fluctutations are therefore still present in the bare effec-
tive action, and hence the Gaussian fixed point is stable in
our tree-level analysis. We note, however, that at present we
cannot rule out the possibility that loop corrections might
lead to qualitatively new terms in the action. If such new
terms included a RG-generated spin-dependent potential,
then this might change our conclusions. This would not nec-
essarily violate the spin conservation argument given above,
since an effective spin-dependent potential acting only on the
itinerant electrons, which are not taking part in the local
moment formation, could change the critical behavior while
preserving spin conservation for the system as a whole.

A more detailed investigation of this point is not feasible
within the existing framework of the ferromagnetic theory.15

This is because in the existing theory all degrees of freedom
other than the order parameter, including various soft modes,
have been integrated out. This leads to a nonlocal field
theory which is unsuitable for an explicit loop expansion. A
remedy would be to derive an effective theory that keeps all
soft modes explicitly and treats them on equal footing, lead-

ing to well-behaved vertices that allow for explicit calcula-
tions. This project is left for future work. We also note that at
such a level of the analysis one should also include effects
due to interactions between the rare regions, which we have
mostly neglected. Such interactions are known to weaken the
effects of the rare region,23 but in general it is not known by
how much.

D. Summary and outlook

In summary, we have studied the effects of rare disorder
fluctuations, and the resulting local moments, on itinerant
ferromagnets and antiferromagnets. Technically, this has
been achieved by considering nontrivial saddle-point solu-
tions before performing the disorder average. A perturbative
RG analysis of the resulting effective field theory incorpo-
rates effects that would require nonperturbative methods
within a more standard procedure. In the ferromagnetic case
we have found that, at least within our level of analysis, the
previously found quantum critical behavior15 is stable with
respect to local-moment physics. The reason is an effective
long-range interaction between the spin fluctuations that
strongly suppresses fluctuations, stabilizing a Gaussian criti-
cal fixed point. In the antiferromagnetic case, however, we
have found that the local moments destroy the previously
found critical fixed point.13 To one-loop order and for order
parameter dimensionalities less than 4, no new fixed point
exists and one finds runaway flow in all of physical param-
eter space. This may indicate either the absence of long-
range order, or a transition that is not perturbatively acces-
sible within our theory.

An important technical conclusion is that for quantum
phase transitions and within the framework of a replicated
theory, rare regions can have a qualitative effect already at
the level of a replica-symmetric theory, in contrast to the
case of classical magnets.8 The ferromagnetic fixed point,
which was found to be stable against the replica-symmetric
quantum effects induced by the rare regions, is also stable
against replica-symmetry breaking.

We have concentrated on the role of fluctuations about a
nontrivial, but fairly crudely constructed, saddle-point solu-
tion of the field theory. It would also be interesting to study
a somewhat more sophisticated saddle-point theory in more
detail and to determine the detailed properties of the Griffiths
phase in such an approximation.

Finally, we mention that our methods are not specific to
magnets and can be applied to other quantum phase transi-
tions as well. For instance, it is believed that for a complete
understanding of the properties of doped semiconductors and
of the metal-insulator transitions observed in such systems, it
is necessary to consider the effects of local moments.24,23,25

This can be studied with the methods developed in this
paper.
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APPENDIX A: A ONE-DIMENSIONAL SADDLE-POINT
EQUATION

In this appendix we discuss the saddle-point equation
~2.5! for a particular realization of the disorder potential
dt(x). In particular, we aim to show that the existence of a
nonzero solution requires the width and depth of the poten-
tial well to be above a threshold, and that the nonzero solu-
tion lowers the free energy with respect to the zero one.

We first consider the one-dimensional counterpart of
Eq. ~2.5!,

@ t01dt~x!2]x
2#f~x!1gf3~x!50, ~A1!

with a simple square well potential

dt~x!5H 2V0 for 0<x,a,

0 elsewhere.
~A2!

Standard methods lead to a solution inside the well (0<x
,a)

f in~x!5Av1

g

cnAv2x/2

dnAv2x/2
, ~A3a!

where ‘‘cn’’ and ‘‘dn’’ are elliptic functions, and a solution
outside of the well,

fout~x!5At0

g

2A2ce2At0x

c2e22At0x21
. ~A3b!

Here

v2,15
a6Aa224b

2
, ~A4a!

with

a52~ t02V0!. ~A4b!

c andb are constants of integration that are determined by
the requirement that the solution and its derivative be con-
tinuous atx5a. Other solutions exist, but the one given is
the only one that satisfies physical boundary conditions. Fur-
thermore, the physical solution exists only for

0,b,a2/4. ~A5!

To demonstrate the existence of a threshold, we expand
the above solution for small values ofv2a. To leading order
in this small parameter, we obtain for the constants of inte-
gration

c5
1

4
A2

t0
Av1eAt0a ~A6a!

and

b5
a2

4
2

t0

2a2
. ~A6b!

From the condition for the existence of the physical solution,
Eq. ~A5!, we see thata2a2.2t0 is a necessary and sufficient
condition for the solution to exist, which is the desired
threshold property.

The free energy in the saddle-point approximation is sim-
ply given by the saddle-point action. It is physically plau-
sible that the nonhomogeneous solution constructed above
leads to a negative free energy, and is thus energetically
favorable compared to the zero solution. We have ascer-
tained this numerically for a large variety of well parameter
values, and have found the inhomogeneous solution to lead
to a negative free energy whenever it exists.

To solve the three-dimensional saddle-point equation
~2.5! is much harder. For sperically symmetric wells,t0
1dt(x)5t(r ), with r 5uxu, analytic solutions can still be
found in closed form for special forms of the potential. By
scalingf and t, the equation can be written as

¹21t~r !f~r !1f3~r !50. ~A7!

It is easy to show that for

t~r !5
22b

~11br !
1b21

4bcr

~11cr2!
2

2c

~11cr2!

2
4bcr

~11cr2!~11br !
1

8c2r 2

~11cr2!2
2

2b2

~11br !

2
4c

~11br2!
2

a2~11br !2e22br

~11cr2!2
, ~A8a!

the physical solution is given by

f~r !5
a~11br !exp~2br !

~11cr2!
. ~A8b!

Herea, b, andc are parameters that determine the shape of
the well. In this case, the physical solution exists for all real
values of the three parameters, but the form of the potential
is such that the volume of the well cannot be smaller than
some minimum value. This is the three-dimensional analog
of the threshold behavior demonstrated above for the one-
dimensional case. We have also solved the ordinary differ-
ential equation~A7!, numerically for more general potential
wells, and have found the same type of threshold behavior.

As in the 1D case, physical arguments suggest, and nu-
merical integration confirms, that the inhomogeneous solu-
tion leads to a lower free energy than the homogeneous one
whenever the former exists. In Fig. 2 we show the solution
and the corresponding potential well, Eqs.~A8!, as a repre-
sentative example of a locally ordered region in a 3D system.

APPENDIX B: ISLAND-SIZE DISTRIBUTIONS
WITH A POWER-LAW TAIL

In Secs. III and IV we have assumed that the island cor-
relation functionsD isl

(m) andCisl
(m) are short-range correlated,

i.e., have a scale dimension of (m21)D. Here we briefly
discuss the extent to which one can relax this condition with-
out changing our results.

Suppose that the island-size distribution is power-law cor-
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related, leading to scale dimensions of the above correlation
functions that are given by (m21)(D2a) with a.0. Let
us consider the FM case first. The least irrelevant term, viz.,
Eq. ~4.8b!, remains irrelevant with respect to the Gaussian
fixed point of Ref. 15 as long asa,42D ~for 2,D,4).
The D dependence of this result reflects the fact that forD
>4 the effective interaction ceases to be long ranged, and an
ordinary mean-field fixed point is stable. All higher-order
terms in the action are less relevant than thew term.

In the AFM case, thew term is relevant with respect to
the conventional fixed point even fora50. By power count-
ing, we find the condition that none of the higher-order terms
become relevant as well, viz.,a,D23 for D close to 4.
Here theD dependence reflects the fact that the coupling
constantw6 is marginal inD53 even fora50; see Sec.
III A.

APPENDIX C: STABILITY UNDER REPLICA SYMMETRY
BREAKING

In this appendix we briefly consider the effects of replica
symmetry breaking~RSB!. A generalization of our action,
Eq. ~2.19!, analogous to Ref. 8 that allows for RSB is

Seff@wa~x!#5
1

2 (
a

E dxdywa~x!•G0~x2y!wa~y!

1u(
a

E dxdt@wa~x,t!#•@wa~x,t!#2

2(
a,b

~D1wab!

E dxdtdt8@wa~x,t!•wa~x,t!#

3@wb~x,t8!#•@wb~x,t8!#. ~C1!

In Sec. II we hadwab[w, which resulted in a replica-
symmetric theory. Now we allow for one-step RSB in Pari-
si’s hierarchical scheme,26 wherewab in the replica limit is
parametrized by means of a step function with a parameter
x0,

w~x!5H w for 0<x<1,

w1 for x0,x<1.
~C2!

Defining w̄5wTet as before, andw̃5w1 ,Tet, we obtain the
one-loop flow equations

du

dl
5~e22et!u24~p18!u2148uD, ~C3a!

dD

dl
5eD132D228~p12!uD18pDw̄28px0Dw̃18pDw̃,

~C3b!

dw̄

dl
5~e22et!w̄14pw̄228~p12!uw̄148Dw̄

24p~12x0!w̃2, ~C3c!

dw̃

dl
5~e22et!w̃148Dw̃28~p12!uw̃18pw̄w̃

18p~12x0!w̃2. ~C3d!

The replica-symmetric case is recovered by puttingx051.
We now perform a linear stability analysis of fixed point No.
8, with fixed-point values ofu, D, andw as given in Table I,
andw̃* 50. The first three eigenvalues are as shown in Table
I, and the fourth one isl w̃5lw5(p24)(e14et)/2(10
2p). Fixed point No. 8 is therefore stable against one-step
RSB. Although the fixed point is unphysical for generic re-
alizations of the disorder, as discussed in Sec. III, this is an
interesting contrast to the classical case,8 where all fixed
points are unstable against successive terms in the hierarchi-
cal RSB scheme.
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