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PHYSICAL REVIEW B 69, 174410 (2004

Smeared phase transition in a three-dimensional Ising model with planar defects:
Monte Carlo simulations

Rastko Sknepnek and Thomas Vojta
Department of Physics, University of Missouri-Rolla, Rolla, Missouri 65409, USA
(Received 19 November 2003; published 7 May 2004

We present results of large-scale Monte Carlo simulations for a three-dimensional Ising model with short-
range interactions and planar defects, i.e., disorder perfectly correlated in two dimensions. We show that the
phase transition in this system is smeared, i.e., there is no single critical temperature, but different parts of the
system order at different temperatures. This is caused by effects similar to but stronger than Griffiths phenom-
ena. In an infinite-size sample there is an exponentially small but finite probability to find an arbitrary large
region devoid of impurities. Such a rare region can develop true long-range order while the bulk system is still
in the disordered phase. We compute the thermodynamic magnetization and its finite-size effects, the local
magnetization, and the probability distribution of the ordering temperatures for different samples. Our Monte-
Carlo results are in good agreement with a recent theory based on extremal statistics.

DOI: 10.1103/PhysRevB.69.174410 PACS nuni®er75.10.Nr, 75.40.Mg, 05.70.Jk

[. INTRODUCTION view this means there is a critical fixed point with finite
disorder strength. At a finite-randomness critical point, the
The influence of disorder on a phase transition is an imthermodynamic observables obey standard power-law scal-
portant and still partially open problem. Historically, the first ing behavior, but with exponents different from the expo-
attempts to address this question resulted in the belief thatents of the corresponding clean system. The other scenario,
any kind of disorder would destroy a critical point becausean infinite-randomness critical point, occurs if the effective
the system would divide itself into regions which indepen-disorder strength in the system grows without limit under
dently undergo the phase transition at different temperaturesoarse graining. The system looks more and more disordered
Therefore, there would not be a unique critical temperaturen larger and larger length scales, i.e., it is described by a
for the system, but the phase transition would be smearegnormalization-group fixed point with infinite disorder. The
over an interval of temperatures. The singularities of thermoprobability distributions of the thermodynamic observables
dynamic quantities, which are the typical sign of a phaséecome very broateven on the logarithmic scaland their
transition, would also be smearéske Ref. 1 and references widths diverge when approaching the critical point. The scal-
therein. ing behavior is of activated rather than of conventional
However, it soon became clear that this belief was mispower-law type. A famous example of an infinite-
taken: in systems with weak short-range correlated disordeiandomness critical point occurs in the McCoy-Wu matfel,
the phase transition remains sharp. Harris proposed a simpla,two-dimensiona{2D) Ising model with bond disorder per-
heuristic criteriod for the influence of disorder on a critical fectly correlated in one dimension and uncorrelated in the
point: if v=2/d, where v is the correlation length critical other. Recently, infinite-randomness critical points have also
exponent andl the spatial dimensionality, the disorder doesbeen found in several 1D random quantum spin chains and
not affect the critical behavior. In this case, the randomnestwo-dimensional random quantum Ising modéef¥:
decreases under coarse graining, and the system effectively Disorder does not only influence the physics at the critical
looks homogeneous on large length scales. The critical bepoint itself, but also produces interesting effects close to it.
havior is identical to that of the clean system, i.e., the clearT hese effects are known as Griffiths phenomena, a topic that
renormalization group fixed point is stable against disorderhas regained considerable attention in recent years. Griffiths
The relative widths of the probability distributions of the phenomena are nonperturbative effects produced by rare dis-
macroscopic observables tend to zero in thermodynami@l’der fluctuations close to a phase transition. They can be
limit, i.e., they are self-averaging. understood as follows: Generically, the critical temperature
Even if the Harris criterion is violated the phase transitionT of a disordered system is lower than its clean valife,
will generically remain sharp, but the critical behavior will In the temperature interva'IC<T<T8, the bulk system is in
be different from the clean case. There are two possible scehe disordered phase. On the other hand, in an infinite size
narios, a finite-randomness critical point or an infinite-sample, there is an exponentially small, but finite probability
randomness critical point. A critical point is of finite- for finding an arbitrary large region devoid of impurities.
randomness type if, under coarse graining, the system stay&ich a region, a “Griffiths island,” can develop local order
disordered on all length scales with the effective strength ofvhile the bulk system is still disordered. Due to its size, such
the randomness approaching a finite constant. The probabin island will have very slow dynamics because flipping it
ity distributions of thermodynamic observables reach a finiteequires changing of the order parameter over a large vol-
width in the thermodynamic limit, i.e., they are not ume, which is a slow process. Griffitisshowed that the
self-averaging:* From a renormalization-group point of presence of the locally ordered islands produces an essential
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singularity>® in the free energy in the whole regioh,  mechanism of the smearing is explained. Section Il is de-
<T<T2, which is now known as the Griffiths region or the voted to the results of the Monte Carlo simulations and a

Griffiths phasé’ In generic classical systems the Griffiths comparison with the theoretical predictions. In Sec. IV, we

singularity is weak, and it does not significantly contribute toPresent our conclusions and discuss a number of open ques-

the thermodynamicobservables. In contrast, the long-time tOns.

dynamics is dominated by these rare regions. Inside the Grif-

fiths phase the spin autocorrelation functio(t) decays as Il. THE MODEL

In C(t)~—(Int)¥@Y for Ising systemS 2! and as IrC(t)

~—tY2 for Heisenberg systent8?? These results were re-

cently confirmed by more rigorous calculation for the  Our starting pointis a 3D Ising model with planar defects.

equilibriun?®?* and dynamit>?® properties of disordered Classical Ising spinS;, = = 1 reside on a cubic lattice. They

Ising systems. interact via nearest-neighbor interactions. In the clean system
There are numerous systems where the disorder is n@tl interactions are identical and have the vallieThe de-

point like, but is realized through, e.g., dislocations or grainfects are modeled via “weak” bonds randomly distributed in

boundaries. This extended disorder i-@imensional sys- one dimensioriuncorrelated direction The bonds in the re-

tem can often be modeled by defects perfectly correlated imaining two dimensiongcorrelated directionsremain equal

dc dimensions and uncorrelated in the remainithg=d to J. The system effectively consists of blocks separated by

—d¢ dimensions. It is generally agreed that extended disorparallel planes of weak bonds. Thuk,=1 anddc=2. The

der will have even stronger effects on a phase transition thabHamiltonian of the system is given by

pointlike impurities. Nevertheless, the fate of the transition

A. 3D Ising model with planar defects

in the presence of the extended impurities is not settled,,

o . H=— JiS i «Sis1ik— IS i kS
Early renormalization-group analy&ihased on a single ex- i=1,§_;_, ) SSeET Z ) (S
pansion ine=4—d did not produce a critical fixed point, jk=1...Lc Jk=1...Lc

leading to the conclusion that the phase transition is either 4SS ) (1)
smeared or of first ordéf:2° Later worké®~*2which included AR kL
an expansion in the number of correlated dimensiynkead  whereL, (L¢) is the length in the uncorrelatgdorrelated
to a fixed point with conventional power-law scaling. Subse-direction, i, j, andk are integers counting the sites of the
quent Monte-Carlo simulations of a 3D Ising model with cubic lattice,J is the coupling constant in the correlated di-
planar defects provided further support for a sharp phasgections, and); is the random coupling constant in the un-
transition scenarié® Notice, however, that the perturbative correlated directionJ; are drawn from a binary distribution,
renormalization-group calculations missed all effects coming
from the rare regions. These effects were extensively studied cJ with probability p
for_the above-mentioned McCoy-Wu model. V\/_hile i.t was Ji= J with probability 1-p,
believed for a long time that the phase transition in this
model is smeared, it was later found to be sharp, but otharacterized by the concentratipand the relative strength
infinite-randomness type'!**Based on these findings, there c of the weak bonds (€ c<1). The fact that one can inde-
was a general belief that a phase transition will remain sharpendently vary concentration and strength of the defects in
even in the presence of extended disorder. an easy way is the main advantage of this binary disorder

Recently, it has been shown that this belief is not true. Adistribution. However, it also has unwanted consequences,
theory’>% based on extremal statistics arguments has previz., log-periodic oscillations of many observables as func-
dicted that impurities correlated in a sufficiently high numbertions of the distance from the critical poititThese oscilla-
of dimensions will generically smear the phase transitiontions are special to the binary distribution and unrelated to
The predictions of this theory were confirmed in simulationsthe smearing considered here; we will not discuss them fur-
of mean-field-type modei3®® but up to now, a demonstra- ther. The order parameter of the magnetic phase transition is
tion of the smearing in a more realistic short-range modethe total magnetization
has been missing.

In this paper, we therefore present results of large-scale 1
Monte Carlo simulations for a 3D Ising model with planar m=g iJEk (S0 ()
defects and nearest-neighbor interactions in both the corre- v
lated and uncorrelated dimensions. These simulations showhereV=L, L2 is the volume of the system, ad) is the
that the sharp phase transition is indeed destroyed by thtaermodynamic average.
extended disorder. The smearing of the transition is a conse- Now we consider the effects of rare disorder fluctuations
guence of a mechanism similar to but stronger than the Grifin the system. Similarly to the Griffiths phenomena, there is
fiths phenomena. In an Ising system with planar defects trua small but finite probability to find a large spatial region
static long-range order can develop on rare islands devoid afontaining only strong bonds in the uncorrelated direction.
impurities. As a consequence, the order parameter becom&sich a rare region can locally be in the ordered state while
spatially very inhomogeneous and its average develops ahe bulk system is still in the disorderggaramagnetic
exponential dependence on temperature. This paper is orgphase. The ferromagnetic order on the largest rare regions
nized as follows. In Sec. II, the model is introduced and thestarts to emerge right below the clean critical temperature

@)
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T2. Since the defects in the system are planar, these ramghere¢ is the finite-size scaling shift exponent of the clean
regions are infinite in the two correlated dimensions but fi-system andA is the amplitude for the crossover from three
nite in the uncorrelated direction. This makes a crucial dif-dimensions to a slab geometry infinite in twoorrelatedl
ference compared to systems with uncorrelated disordeglimension but with finite length in the thirLincorrelated
where rare regions are of finite extension. In our systemgirection. The reduced temperatureT—Tg measures the
each rare region is equivalent to a two-dimensional Isinglistance from theclean critical point. Since the clean 3D
system that can undergo a real phase transition independenting model is below its upper critical dimensiod (=4),

of the rest of the system. Thus, each rare region can indepenyperscaling is valid and the finite-size shift exponent
dently develop true static order with a nonzero static value o= 1/». Combining Eqs(4) and(5) we get the probability for
the local magnetization. Once the static order has developeginding an island of length., which becomes critical at
the magnetizations of different rare regions can be aligned b¥omet, as

an infinitesimally small interaction or external field. The re-

sulting phase transition will thus be markedly different from w(tc)~e‘5|tc|7v (for t.—0—) (6)

a conventional continuous phase transition. At a conven-

tional transition, a nonzero order parameter develops as Yith the constanB=—In(1—-p)A”. The total(averagg mag-
collective effect of the entire system which is signified by an€tizationm at some reduced temperaturés obtained by

diverging correlation length of the order parameter fluctuaintegrating over all rare regions which haye-t. Since the

tions at the critical point. In contrast, in a system with planariunctional dependence drof the local magnetization on the
defects, different parts of the systefim the uncorrelated 'Sland is of power-law type it does not enter the leading
direction will order independently, at different temperatures. €XPonentials but only preexponential factors, so

Therefore the global order will develop inhomogeneousl| -

and the correlagt]ion length in the uncorr%lated dirgction Wi|)|/ m(t)~e 8" (for t—0-). @)
remain finite at all temperatures. This defines a smeared tran-
sition. Thus we conclude that planar defects destroy a shar&
phase transition and lead to its smearing.

Now we turn our attention to the homogeneous magnetic
sceptibility. It contains two contributions, one coming
from the islands on the verge of ordering and one from the
bulk system still deep in the disordered phase. The bulk sys-
B. Results of extremal statistics theory tem provides a finite, noncritical background susceptibility
. . . . throughout the whole tail region of the smeared transition. In
In this section we briefly summarize the results of the . S T
o o ot order to estimate the second part of the susceptibility, i.e., the
extremal statistics theot§ for the behavior in the “tail” of ; . .
NS , part coming from the islands consider the onset of local mag-
the smeared transition, i.e., in the parameter region where'a_,. ~ . o . -
. : . ~netization at the clean critical point. Using E@) for the
few rare regions have developed static order but their densﬂ& . . .
. N . . ensity of islands we can estimate
is still sufficiently low so they can be considered as indepen-
dent. The approach is very similar to that of Lifsfiftand A N
others developed for the description of the tails in the elec- XNJ dtt7e Bt (for t—0—). (8
tronic density of states. The extremal statistics th&ocpr- 0

rectly describes the leadingexponential behavior of the  The |ast integral is finite because the exponentially decreas-
magnetization and other observables. A calculation of preeXi'ng island density overcomes the power_|aw divergence of
ponential factors would be much more complicated becausge susceptibility of an individual island. Heseis the clean
one would have to include, among other things, details of thgysceptibility exponent andl is related to a lower cutoff for
geometry of the rare regions, surface critical behaVittat the island size. Once the first island is ordered it produces an
the surfaces of the rare regions, and corrections to finite-sizgfective background magnetic field which cuts off any pos-
scaling. This is beyond the scope of the present paper.  sjple divergence iry. Therefore, we conclude that the ho-
The probabilityw to find a large region of linear size, ~ mogeneous magnetic susceptibility does not diverge any-
containing only strong bonds is, up to preexponential factorsyhere in the tail of the smeared transition. However, there is
an essential singularity at the clean critical temperature pro-
w~(1—-p)t= gn(l-p)L, (4) duced by the vanishing density of ordered islands. Because if
this singularity one might be tempted to call this temperature

As discussed in Sec. Il A, such a rare region develops statif'e transition temperature of our system, but this is not ap-
long-range(ferromagnetit order at some reduced tempera- Propriate because at this temperature only an infinitesimally
ture T(L, ) below the clean critical reduced temperatlife small part of the system starts to d'evelop' a f[nlte magnetiza-
The value ofT.(L,) varies with the length of the rare re- t|or! while most of the sys_tem remains SO'.'(.jIy in the nonmag-

gion; the longest islands will develop long-rage order closesPetic phase. We rather_wew the cl_ean critical temperature as
to the clean critical point. A rare region is equivalent to a slap'® ONnset of the smearing region in our motfel.

of the clean system, we can thus use finite-size scaling to The spatial distribution of the magnetization in the tail
obtain region of the smeared transition is very inhomogeneous. On

the already ordered islands, the lo¢kyer magnetization
B m; = (1/L(2:)2j,k<3,j,k) is comparable to the magnetization of
Te-To(L)=]t(L)|=AL"?, (5 the clean system. On the other hand, far away from the or-
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dered islandsn, decays exponentially with the distance from However, fort—0— very large and rare islands are respon-
the closest one. The probability distribution of the logarithmsible for the order parameter. The numbkof islands which
of the magnetizatiorP[In m] will therefore be very broad, order att behaves likeN~L, w(t). When N becomes of
ranging from Inm=0(1) on the largest islands to iIn—  order one, strong sample-to-sample fluctuations arise. Using
—oo on sites very far away from any ordered islands. TheEq. (6) for w(t) we find that strong sample to sample fluc-
typical magnetizatiomy,, can be estimated from the typical tuations start at
distance of a point from the nearest ordered island. Using Eq.
(6) we get 1 — i
(g 14

Xeyp~ €5l (9)
At the distancex,y, from an ordered island, the local mag- Thus, finite-size effects are suppressed only Iogarithmicglly.
netization has decayed to Analogoggly, one can study the onset of static order in a

sample of finite sizé&., (i.e., the ordering temperature of the
(10) largest rare region in this samplé&or small sample size, ,

the probability distributionP(T,) of the sample ordering
where &, is the bulk correlation length, which is finite and temperatured will be broad because some samples do not
changes slowly throughout the tail region of the smearedontain any large islands. With increasing sample size the
transition, andC is a constant. A comparison with E§/) distribution becomes narrower and moves toward the clean
gives the relation betweem,,, and the thermodynamic or- T9 because more samples contain large islands. The maxi-

- —ceBlt™”
My~ € Xtyp/fo—ve Ce

der paramete(magnetizationm as mum T, coincides withT? corresponding to a sample with-
1 out impurities. The lower cutoff corresponds to an island size
[In My~ = (11)  sosmall that essentially every sample contains at least one of
m

them. Consequently, the width of the distribution of critical
Thus, my,, decays exponentially witim indicating an ex- temperatures in finite-size samples is governed by the same

tremely broad order parameter distribution. In order to detert€lation as the onset of the fluctuations,
mine the functional form of the local order parameter distri-

bution, first consider a situation with just a single ordered AT ~(£In(L )) H (15)
island at the origin of the coordinate system. For large s \B L '
distancesx, the local magnetization falls off exponentially
as m(x)=mee ¥%. The probability distribution ofy For the system under study in this paper, a finite size in
=In[m(x)]=In my—x/&, can be calculated from the correlated direction has far less interesting consequences.
In this case the rare regions are finite in all directions and
P(ly|)= ‘d_N‘ _ d_N d_x =§0d_N~§0 (12) cannot develop true static order. Therefore, the phase transi-
dy| dx|dy dx ' tion is rounded by conventional finite-size effects in addition

wheredN is the number of sites at a distance from the origint0 the disorder induced smearing discussed in this paper.

betweerx andx+dx or, equivalently, having a logarithm of
the local magnetization betwegrandy +dy. Therefore, for I1. NUMERICAL RESULTS
large distances, the probability distribution ofnh(x) gener-
ated by a single ordered island takes the form A. The method
We now turn to the main part of the paper, Monte Carlo
PlIn(m)]=const (for m(x)<1). (13 simulations of a 3D Ising model with planar bond defects

In the tail region of the smeared transition our system con@nd short range interactions, as given in Eq. The simu-

sists of a few ordered islands whose distance is large conf2tions d:_;lre perfgrmt()ad usinhg the Wolff clustehr algoritfin.

pared to&,. The probability distribution of the local magne- _ AS discussed above, the smearing of the transition is a
tization, Infn), thus takes the formt3) with a lower cutoff result of exponenually rare events. Therefore suff|C|_entIy
corresponding to the typical island-island distance and arlprge system sizes are required in order to observe it. We

: : have simulated system sizes ranging fram=50 to L
upper cutoff corresponding to a distanggfrom an ordered i ST L
isFI)aE)nd. P g =200 in the uncorrelated direction and frdng=50 to L.

=400 in the remaining two correlated directions, with the
largest system simulated having a total of 32 million spins.
We have chosed=1 andc=0.1 in the Eq.(2), i.e., the

It is important to distinguish effects of a finite sike in  strength of a weak bond is 10% of the strength of a strong
the correlated directions and a finite size in the uncorre-  bond. The simulations have been performed for various dis-
lated directions. I1L, is finite butL¢ is infinite static order order concentrationp={0.2,0.25,0.3. The values for con-
on the rare regions can still develop. In this case, the sampleentrationp and strengthc of the weak bonds have been
contains only a finite number of islands of a certain size. Axhosen in order to observe the desired behavior over a suffi-
long as the number of relevant islands is large, finite-sizeciently broad interval of temperatures. This issue will be dis-
effects are small and governed by the central limit theoremcussed in more detail in Sec. IV. The temperature range has

C. Finite-size effects
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beenT=4.325 toT=4.525, close to the critical temperature 1.0 —
of the clean 3D Ising modeél’=4.511. ] * J10
Monte Carlo simulations of disordered systems require a 0.8_"%.\.
huge computational effoff For optimal performance one N Jdos
must thus carefully choose the numbég of disorder real- 1
izations (i.e., samplesand the numbeN, of measurements 0.6 {os
during the simulation of each sample. Assuming full statisti- ' xé
cal independence between different measuremégiste g 0.4 1 =)
possible with a cluster updatehe variancen% of the final 104
result (thermodynamically and disorder averagéar a par- —&—m
ticular observable is given B3** 029 —k— .. 102
\ E
o3=(0%+ a?IN))/Ng, (16) 0.0 +—b—p—apT ' e 400

32 34 36 3.8T4.0 42 44 46

whereog is the disorder-induced variance between samples

and o is the variance of measurements within each sample. F|G. 1. Average magnetization and susceptibility (spline fif

Since the computational effort is roughly proportional to as functions off for L, =100, L= 200, andp=0.2 averaged over

N;Ns (neglecting equilibration for the momentt is then 200 disorder realizations.

clear that the optimum value &, is very small. One might

even be tempted to measure only once per sample. On theodel v=0.627. The deviation from the straight line for

other hand, with too short measurement runs most computamall m is due to the conventional finite size effec¢tee

time would be spent on equilibration. discussion in Sec. Il £ In the inset we show that the decay
In order to balance these requirements we have used @nstanB depends linearly or-In(1—p). This is the behav-

large numbeiNg of disorder realizations, ranging from 30 to ior expected from Eq(4).

780, depending on the system size and rather short runs of

100 Monte(garlo Swe.e%s’fwitz rgleasurembentsftalren aftf?r €V- C. Finite-size effects and sample-to-sample fluctuations

ery swee sweep is define a number of cluster flips . . L

soythat thg total nur%ber of flippeg spins is equal to the nSm- As discussed in Sec. Il C one should distinguish between

ber of sites, i.e., on the average each spin is flipped once p Yo dif_ferent .finite-size effegts, i..e., effects coming from the
sweep. The length of the equilibration period for each inite sizeL ¢ in correlated direction and effects produced by

sample is also 100 Monte Carlo sweeps. The actual equilith€ finite sizeL, in uncorrelated direction. .
We start with analysis of the finite-size effects in corre-

bration times have typically been of the order of 10-20

sweeps at maximum. Thus, an equilibration period of 10dated directions, i.e.L¢ finite andL, —c. The true static
sweeps is more than sufficient. order on the rare regions is destroyed by the finite length of

the island in the correlated direction. For our modek 1
o o S0 no true static long-range order can develop. The value of
B. Total magnetization and susceptibility m measured in the simulations is thus due to fluctuations
In this section we present numerical results for the totawhich are governed by the central limit theorem, i,
magnetizationm (as usual, our Monte Carlo estimatorrofis

the average of thebsolute valueof the magnetization in

each measuremenand the homogeneous susceptibiljgy -1.04
=¢m/dh. Figure 1 gives an overview of total magnetization

and susceptibility as functions of temperature averaged over 154
200 samples of size, =100 andL =200 with an impurity

concentrationp=0.2. We note that at the first glance the
transition looks like a sharp phase transition with a critical
temperature betweem=4.3 andT=4.4, rounded by con-
ventional finite-size effects. In order to distinguish this con- 25
ventional scenario from the disorder induced smearing of
Sec. Il, we have performed a detailed analysis of the system
in a temperature range in the immediate vicinity of the clean -3.0 T
critical temperatur@®=4.511.

In Fig. 2, we plot the logarithm of the total magnetization

vs |T¢—T|"" averaged over 240 samples for system $izé gy 2. Logarithm of the total magnetizationas a function of
=200, Lc=280 and three disorder concentrations |T0_7|-* (,=0.627) for several impurity concentrationg
=1{0.2,0.25,0.3. The standard deviation of the total magne- =0.2,0.25,0.3, averaged over 240 disorder realizations. System size
tization is below 10°. For all three concentrations the data L, =200, L.=280. The statistical errors are smaller than a symbol

follow the analytical prediction, Eq.7), over more than an size for all Ing(m)>—2.5. Inset: Decay slopB as a function of
order of magnitude im with the exponent for the clean Ising —In(1—p).

-2.0

IT-T"
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FIG. 4. Logarithm of the total magnetizationas a function of
FIG. 3. Logarithm of the total magnetizationas a function of  |Te—T| " for L, =200, Lc=280, andp=0.2 for three different
|Tg_T|*V (v=0.627) for disorder concentratign=0.2 and sys- disorder realizations. The thermodynamic statistical error gfin
tem sized | =200, L.=50-400. The statistical errors are smaller of a singlerealization is about 0.1. Straight line represents the av-
than about a symbol size. The solid line shows the analytic predicerage over 240 disorder realizations. Upper panel: The coupling
tion, Eq. (7). Inset: Total magnetizatiom as a function of inverse constantJ; in the uncorrelated direction as a functionidfor the
length in the correlated directionc for T=4.5 (T—T9 " corresponding three disorder realizations. Numbers indicate length
=16.91). of the longest islandl; in the uncorrelated direction. Inset: Relation
between the sample critical temperatiiteand the size of the island
~V~Y2 whereV=L, L2 is the volume of the system. This length, plotted a$T— T, =" as a function of island length.
produces a conventional finite-size rounding responsible for
the deviations oim from the exponential law in Fig. 2. In shows the coupling constaiit as a function of the position
Fig. 3, we investigate this finite-size effect in more detail.for the three samples. The numbers in the graph indicate the
This figure shows the total magnetizationas a function of  |engths of the longest islands,. The system size i4
|T2—T|‘V for systems with fixed size in the uncorrelated =200, L.=280 with disorder concentratiop=0.2. The
direction L, =200 and various lengths in the uncorrelatedsolid line is the average magnetization over 240 disorder
direction, L-=50,70,100,140,200,280,400. The magnetizatealizations. We see that all three curves qualitatively follow
tion is averaged over 30-240 disorder realizations. As exthe average at low temperatures but start to deviate from it at
pected, for high temperatures, the total magnetization showsigher temperatures. The temperatiiceat which the mag-
a strong dependence & . The smallest systems follow the netization of a sample rapidly drops is associated with the
exponential behaviof7) only over a narrow range of tem- ordering of the largest island in this sample. Numerically, we
peratures and then cross over to the fluctuation determinedketermineT, as the temperature where the sample magneti-
value. IfL is increased the crossover between the exponereations falls below 1/3 of the average magnetization. This
tial behavior (7) and the fluctuation background shifts to definition contains some amount of arbitrariness which cor-
higher temperatures. In order to show that the fluctuationresponds to an overall shift of all,. However, the leading
determined value of the total magnetizationat high tem-  functional dependence dfs on the sizeL; of the longest
peratures indeed follows the predictions of the central limitisland in the sample is not influenced by this shift. In order to
theorem, i.e.m~V~Y2=(L,L2) Y2~ 1/L¢ (L, isconstant  demonstrate this dependence we can apply finite size scaling
we plot m as a function of 1 (T=4.5|T—T9 ¥ for the clean 3D Ising modeislands are regions devoid of
=16.91). The numerical data shown in the inset of Fig. 3impurities in the slab geometry, i.e. on a sample of length
can indeed be well fitted with a straight line. These resultdn one dimension and essentially infinite length in other two
show that the smalin deviations from the predicted behav- dimensions (c>L;). In the inset of Fig. 4 we pIotTg
ior (7) are indeed the result of conventional finite-size round-—T¢| ~* as a function oL ;. The data show good agreement
ing. with the finite-size scaling prediction. Figure 4 also demon-
We now turn our attention to the more interesting finite strates that, in the tail of the smeared transitidor T
size effects produced by the finite sample lenggthin the —>T2), the averagéthermodynamicmagnetization is deter-
uncorrelated direction. For sufficiently smal] one expects mined by rare samples with untypically large rare regions.
strong sample to sample fluctuations, as discussed in Sec. In Fig. 5, we show the probability distribution of the
I1C. In Fig. 4 we show the logarithm of the total magneti- sample ordering temperatur@, for system sizesL
zationmas a function of T—T| ~* for three typical disorder = 25,50,75,100,200 antlo=200, computed from 700 to
realizations. For comparison, the upper panel of the Fig. 480 disorder realizationghe statistical error of th&, values
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TS FIG. 6. Local magnetizatiom; of a particular disorder realiza-

tion as a function of the position in the uncorrelated direction
FIG. 5. The probability distribution of sample critical tempera- (system sizel. =200, L.=200 and temperatur@ =4.425). The
ture T as for different sample lengths in the uncorrelated direction statistical error is approximately>510~3. Lower panel: The cou-
The data shown is for system with =25,50,75,100,200, and:  pling constant); in the uncorrelated direction as a function of po-
=200. The probability distribution is calculated from 700 to 780 sition i. Inset: Log-linear plot of the zoomed in region in the vicin-
disorder realizations and disorder concentratipr0.2. Inset: ity of the largest ordered island.
Width of the probability distribution as a function of In(~*".

ment with the typical off-island value in Fig. 6. Heild,, is
is ATg=0.03). The results are in good agreement with thethe number of correlated volumes per slab as determined by
predictions of Sec. Il C, i.e., the probability distribution of the size off the Wolff clustel, is a typical linear size of a
the sample critical temperature becomes narrower and mova&solff cluster which is, aff =4.425,L~10. In the inset of
toward the clean critical temperature as the sample leingth Fig. 6 we zoom in on the region around the largest island.
in the uncorrelated direction is increased. In the inset of FigThe local magnetization, plotted on the logarithmic scale,
5, we show that the width of the probability distributishe-  exhibits a rapid drop off with the distance from the ordered
fined as its standard deviatipis proportional to Ini;)~*” island. This drop off suggests a relatively snialffew lattice
as predicted in Eq15). spacinggbulk correlation lengttg, in this parameter region.
As was discussed above, finite-size fluctuations of the lo-
cal magnetization far from the ordered islands mask the true
asymptotic behavior for very smath; . In order to verify the
We now turn to the locallayen magnetizatiorm; (as for  probability distribution(13) of the local magnetization nu-
the total magnetization, our Monte Carlo estimator is themerically, fluctuations have to be suppressed sufficiently.
average of theabsolute valueof the layer magnetizations This would require simulating very large systems whose
for each measuremeniClose to the clean critical point the sizes in the correlated direction increase quadratically with
system contains a few ordered islaricre regions devoid of the required magnetization resolution. With sizes available in
impuritie9 typically far apart in space. The remaining bulk our simulations we were not able to reproduce the distribu-
system is essentially still in the disordered phase. Figure @on function, Eq.(13), of P(In m) predicted to be constant at
illustrates such a situation. It displays the local magnetizatiosmall m; and calculated for the mean-field mod®I.
m; of a particular disorder realization as a function of the
position i in the uncorrelated direction for the side,
=200, L,=200 at a temperature=4.425 in the tail of the IV CONCLUSIONS

smeared transition. The lower panel shows the local coupling |n this final section we summarize our results and discuss
constant; as a function of. The figure shows that a sizable how the disorder induced smearing of the phase transition
magnetization has developed on the longest island onlfound here compares to the Griffiths phenomena. We also
(around position =160). One can also observe that orderremark on favorable conditions for observing the disorder-

starts to emerge on the next longest island located close iaduced smearing in experiments and simulations. Then we
i =25. Far from these islands the system is still in its disor-shortly discuss differences between models with discrete and
dered phase. In the thermodynamic limit, the local magneticontinuous symmetry. We end by briefly addressing the ques-
zation should be exponentially small as predicted by Eqtion of smearing of quantum phase transitions.

(10). However, in the simulations of a finite-size system the We have performed large-scale Monte Carlo simulations

local magnetization has a lower cut off which is produced byof a 3D Ising model with short ranged, nearest-neighbor in-

finite-size fluctuations of the order parameter. These fluctuateractions and planar defects, introduced via correlated bond
tions are governed by the central limit theorem and can béisorder. The results of the simulations show that the phase
estimated asny~ 1/\/Ncor~\/L02|/Lc2~5>< 1073 in agree- transition is not sharp, but rather smeared over a range of

D. Local magnetization
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temperatures by the presence of the extended defects. Tirgg. Consequently, the best parameters for observing the
numerical results are in good agreement with the theoreticamearing are a small concentration of strong impurities. This
predictions (see Sec. Il B based on the Lifshitz tail has been confirmed in test calculations using concentrations
arguments>=6 from p=0.05 to 0.5. Unfavorable parameter values may also
The physics behind the smearing of the phase transitioR€ the reason why no smearing has been observed in previ-
discussed in this paper is similar to the physics underlyin$us simulation$®*’ Specifically, in Ref. 33, simulations
Griffiths phenomena. Both effects are produced by rare spatave been performed using a high concentrapen0.5 of
tial regions which are devoid of impurities and therefore lo-Weak impurities £J/J=0.1). The relatively small system
cally in the ordered phase while the bulk system is still dis-Siz€S(up to L=27) in that simulation were probably not
ordered. The difference between Griffiths phenomena angufficient to observe the smearing. _ _
disorder-induced smearing is a result of disorder correlations. The next remark concerns models with continuous Qrder
If the disorder is uncorrelated or short range correlated, th@2rameter symmetry. As pointed out above, the smearing of

rare regions have finite size and cannot develop true stati € phaS(_arhtranS|t|ort] IS cau_tsr:ad byt.statlc ordgr on the r?re
order. The order parameter on such a rare region still fluctut9'ons- us, Systems with continuous order parameter

ates, albeit slowly. These slow fluctuations lead to the welEymmetry and short-r_a_nge Interactions WOUld. exhibit smear-
known Griffiths singularitie® discussed in Sec. I. In con- Ing of the phase transition only if the disorder is correlated in
. three or more dimensioff§.Again, long-range interactions

trast, if the rare regions are infinite in two or more dimen-, - .
J crease the tendency toward smearing. It is kribwhat

sions a stronger effect arises. The rare regions can develd ; ) .
true static long-range order independently of the rest of th assicalX¥ and Helse_nberg_ systems in 1D and 2D develop
g-range order only if the interaction falls off more slowly

system. The order parameter in such a system develops ve S
y b Y P an 1t29, Therefore a system with linedplanay defects

inhomogeneously, which leads to the smearing of the phas d sh . fthe bh ition if the i
transition. Therefore, exactly the same rare regions whicf{/ould show smearing of the phase transition If the interac-

would result in Griffiths phenomena if the disorder Wastions in2the c40rrelated direction would fall off more slowly
short-range correlated lead to the smeared phase transitiontiiﬁen 1% (167). . . . .

the case of disorder correlated in two or more dimensions, In & €nd our discussion with the brief remark about smear-
this sense the smearing of the transition takes the place 479 Of quantum phase transitions in disordered itinerant elec-
both the phase transition and the Griffiths region. Notice thalfonic systems. Each quantum phase transition can be

long-range interactions increase the tendency toward smeamaPPEd toa clfassmal .phase transition in h|gh.er dlmenslon,
ing. If the interaction in the correlated direction falls off as With imaginary time acting as additional dimension. For dirty

1/r? or slower, even linear defects can lead to smearing, bei}inerant ferrpmagnets t.he effectivg inter'actic_m between the

cause a fl Ising model with 1/? interaction has an ordered SP'Q fluctuatlon_s In the imaginary tlme qllre_ctlon falls off as

phase/546 1/7¢, and the d!sorder is correlated in this dqgctf’&ﬁ?here-
Now we turn our attention to favorable conditions for fore, the dirty itinerant ferromagnetic transition is smeared

observing the smearing in numerical simulations or experi-even for pom_tllke defect’

ments. This turns out to be controlled by two conditions, one . In cqnclusmn, we ha!"e presente(_j results of Mon_te Carlo

for the concentration of the impurities, and one for theirs.'mUIat'ons of a 3D Ising model W'.th short-range interac-
fjons and planar defects. The numerical results show that the

perfect disorder correlations in two dimensions destroy the

sharp magnetic phase transition leading to a smeared transi-

tion at which the magnetization gradually develops over

range of temperatures.

tration of rare regions, Eq6), has to be sufficiently large.
This requires a relatively small concentration of impurities.
If the concentration of the impurities is too high, the expo-
nential drop off of the island number and thusrofis very
steep and the smearing effects would be very hard to ob-

serve. On the other hand, if the impurities are too weak, the ACKNOWLEDGMENT
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