15 research outputs found

    Strong floristic distinctiveness across Neotropical successional forests

    Get PDF
    Forests that regrow naturally on abandoned fields are important for restoring biodiversity and ecosystem services, but can they also preserve the distinct regional tree floras? Using the floristic composition of 1215 early successional forests (≤20 years) in 75 human-modified landscapes across the Neotropic realm, we identified 14 distinct floristic groups, with a between-group dissimilarity of 0.97. Floristic groups were associated with location, bioregions, soil pH, temperature seasonality, and water availability. Hence, there is large continental-scale variation in the species composition of early successional forests, which is mainly associated with biogeographic and environmental factors but not with human disturbance indicators. This floristic distinctiveness is partially driven by regionally restricted species belonging to widespread genera. Early secondary forests contribute therefore to restoring and conserving the distinctiveness of bioregions across the Neotropical realm, and forest restoration initiatives should use local species to assure that these distinct floras are maintained

    Flavor Release Perception of Custard Desserts: Influence of Food Composition and Oral Parameters

    No full text
    The influence of oral processing on in vivo flavor release and perception was evaluated for a firm and a soft custard which varied in carboxymethyl cellulose concentrations. The group of sensory assessors could be divided in two, one group rating higher odor/flavor scores for the firmer custard and the other group for the softer custard. In-nose analysis also revealed two groups with one group showing higher in-nose flavor concentrations for the firmer custard, and the other group for the softer custard. The maximum in-nose flavor concentrations were related to the time to swallowing. Both model mouth and static headspace analysis showed higher flavor release from the softer custard. The study showed the importance of time for oral processing on flavor release and perception

    Contrasting Inflammatory Responses in Severe and Non-severe Community-acquired Pneumonia

    No full text
    The objective of this study was to compare systemic and local cytokine profiles and neutrophil responses in patients with severe versus non-severe community-acquired pneumonia (CAP). Hospitalized patients with CAP were grouped according to the pneumonia severity index (PSI), as non-severe (PSI < 91 points) or severe (PSI 65 91 points). Blood and sputum samples were collected upon admission. Compared to non-severe CAP patients, the severe CAP group showed higher plasma levels of pro- and anti-inflammatory cytokines but in contrast, lower sputum concentrations of pro-inflammatory cytokines. Blood neutrophil functional responses were elevated in CAP patients compared to healthy controls. However, neutrophils from severe CAP patients showed reduced respiratory burst activity compared to the non-severe group. Results indicate that patients with severe CAP fail to mount a robust local pro-inflammatory response but exhibit instead a more substantial systemic inflammatory response, suggesting that a key driver of CAP severity may be the ability of the patient to generate an optimal local inflammatory response. \ua9 2014 Springer Science+Business Media New York

    Bacteremic pneumococcal pneumonia : clinical outcomes and preliminary results of inflammatory response

    No full text
    Purpose: Further examination of clinical outcomes and inflammatory response of bacteremic pneumococcal community-acquired pneumonia (CAP) is of great interest to enhance the care of patients with pneumococcal CAP. Methods: This is a secondary analysis of the Community Acquired Pneumonia Organization (CAPO) to compare the time to clinical stability (TCS), length of hospital stay (LOS), and in-hospital mortality of hospitalized pneumococcal CAP patients with and without bacteremia. To measure the effect of bacteremia in pneumococcal CAP patients on outcomes, we modeled all-cause in-hospital mortality using a Poisson regression model, and TCS and LOS using Cox proportional hazards models. Adjusted multivariate regression models were also used to predict the probability of occurrence of each of the study outcomes. To investigate the inflammatory response, we measured the plasma levels of pro- and anti-inflammatory cytokines [tumor necrosis factor (TNF)-\u3b1, interleukin (IL)-1r\u3b1, IL-6, IL-8, IL-10], inflammatory biomarkers [C-reactive protein (CRP), pro-calcitonin (PCT), and B-type natriuretic peptide (BNP)], and peripheral blood neutrophil responses in 10 patients, 4 bacteremic and 6 non-bacteremic pneumococcal CAP, upon admission and every other day during the first 6 days of hospitalization. Functional data were presented as median and standard error of the median (SEM); due to small number of samples no statistical comparisons were performed between groups. Results: From 833 pneumococcal CAP patients, 394 patients (47 %) were bacteremic. Bacteremic pneumococcal CAP were less likely to reach TCS with an adjusted hazard ratio (AHR) of 0.82 (95 % CI 0.69\u20130.97; p = 0.02) and had higher in-hospital mortality with an AHR of 1.63 (95 % CI 1.06\u20132.50, p = 0.026). Bacteremic pneumococcal CAP patients had a longer LOS than non-bacteremic pneumococcal CAP (p < 0.003). Higher plasma levels of CRP, PCT, and BNP were found in bacteremic than in non-bacteremic patients. The bacteremic group had consistently higher plasma levels of both pro- and anti-inflammatory cytokines. The blood neutrophil functional responses were similar in both groups of patients. Conclusions: Bacteremic pneumococcal CAP patients were significantly associated with higher in-hospital mortality, lower TCS, and longer LOS. HIV-infected patients showed a greater mortality which was not statistically significant. Bacteremic pneumococcal CAP patients had higher levels of biomarkers and systemic cytokines

    Biodiversity recovery of Neotropical secondary forests

    No full text
    Unidad de excelencia MarĂ­a de Maeztu MdM-2015-0552Old-growth tropical forests harbor an immense diversity of tree species but are rapidly being cleared, while secondary forests that regrow on abandoned agricultural lands increase in extent. We assess how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics. Secondary forests recover remarkably fast in species richness but slowly in species composition. Secondary forests take a median time of five decades to recover the species richness of old-growth forest (80% recovery after 20 years) based on rarefaction analysis. Full recovery of species composition takes centuries (only 34% recovery after 20 years). A dual strategy that maintains both old-growth forests and species-rich secondary forests is therefore crucial for biodiversity conservation in human-modified tropical landscapes
    corecore