6 research outputs found
Planck-Scale Physics and Neutrino Masses
We discuss gravitationally induced masses and mass splittings of Majorana,
Zeldovich-Konopinski-Mahmoud and Dirac neutrinos. Among other implications,
these effects can provide a solution of the solar neutrino puzzle. In
particular, we show how this may work in the 17 keV neutrino picture.Comment: 10 pages, IC/92/79, SISSA-83/92/EP, LMU-04/92 (the preprint number
has been corrected; no other changes
Diffuse inverse Compton and synchrotron emission from dark matter annihilations in galactic satellites
Annihilating dark matter particles produce roughly as much power in electrons
and positrons as in gamma ray photons. The charged particles lose essentially
all of their energy to inverse Compton and synchrotron processes in the
galactic environment. We discuss the diffuse signature of dark matter
annihilations in satellites of the Milky Way (which may be optically dark with
few or no stars), providing a tail of emission trailing the satellite in its
orbit. Inverse Compton processes provide X-rays and gamma rays, and synchrotron
emission at radio wavelengths might be seen. We discuss the possibility of
detecting these signals with current and future observations, in particular
EGRET and GLAST for the gamma rays.Comment: 13 pages, 5 figure
Optical Characterization of OMT-Coupled TES Bolometers for LiteBIRD
International audienceFeedhorn- and orthomode transducer- (OMT) coupled transition edge sensor (TES) bolometers have been designed and micro-fabricated to meet the optical specifications of the LiteBIRD high frequency telescope (HFT) focal plane. We discuss the design and optical characterization of two LiteBIRD HFT detector types: dual-polarization, dual-frequency-band pixels with 195/280 GHz and 235/337 GHz band centers. Results show well-matched passbands between orthogonal polarization channels and frequency centers within 3% of the design values. The optical efficiency of each frequency channel is conservatively reported to be within the range 0.64-0.72, determined from the response to a cryogenic, temperature-controlled thermal source. These values are in good agreement with expectations and either exceed or are within 10% of the values used in the LiteBIRD sensitivity forecast. Lastly, we report a measurement of loss in Nb/SiN x/Nb microstrip at 100 mK and over the frequency range 200-350 GHz, which is comparable to values previously reported in the literature