19 research outputs found

    Intrinsic deviations in fluorescence yield detected x ray absorption spectroscopy the case of the transition metal L 2,3 edges

    Get PDF
    Fluorescence yield FY detected x ray absorption spectra XAS of 3d transition metal ions are calculated from the integrated 2p3d resonant x ray emission spectra. The resulting FY XAS spectra are compared with the normal XAS spectra corresponding to the absorption cross section and significant deviations between the two spectra are found. This implies that the assumption that the FY XAS spectrum identifies with the XAS spectrum is disproved. Especially for the early transition metal systems the differences between the FY XAS and XAS are large, due to the opening of inelastic decay channels from selected x ray absorption final states. The theoretical calculations show that the difference between FY detection and XAS is largest for the detection in depolarized geometry. The calculations are compared with experimental spectra for oxides and coordination compounds for Fe2C, Co2C and Ni2C systems. The implications for the sum rules in XAS and magnetic circular dichroism experiments are discusse

    Nanoscale mechanism of UO2 formation through uranium reduction by magnetite

    Get PDF
    Uranium (U) is a ubiquitous element in the Earth’s crust at ~2 ppm. In anoxic environments, soluble hexavalent uranium (U(VI)) is reduced and immobilized. The underlying reduction mechanism is unknown but likely of critical importance to explain the geochemical behavior of U. Here, we tackle the mechanism of reduction of U(VI) by the mixed-valence iron oxide, magnetite. Through high-end spectroscopic and microscopic tools, we demonstrate that the reduction proceeds first through surface-associated U(VI) to form pentavalent U, U(V). U(V) persists on the surface of magnetite and is further reduced to tetravalent UO2 as nanocrystals (~1–2 nm) with random orientations inside nanowires. Through nanoparticle re-orientation and coalescence, the nanowires collapse into ordered UO2 nanoclusters. This work provides evidence for a transient U nanowire structure that may have implications for uranium isotope fractionation as well as for the molecular-scale understanding of nuclear waste temporal evolution and the reductive remediation of uranium contamination

    Magnetic circular dichroism in X-ray fluorescence of Heusler alloys at threshold excitation

    Full text link
    The results of fluorescence measurements of magnetic circular dichroism (MCD) in Mn L_2,L_3 X-ray emission and absorption for Heusler alloys NiMnSb and Co2MnSb are presented. Very intense resonance Mn L_3 emission is found at the Mn 2p_3/2 threshold and is attributed to a peculiarity of the threshold excitation in materials with the half-metallic character of the electronic structure. A theoretical model for the description of resonance scattering of polarized x-rays is suggested.Comment: 3 pages, 2 figures. Discussed at conferences, submitting process in progres

    Electronic structure investigation of CeB6 by means of soft X-ray scattering

    Full text link
    The electronic structure of the heavy fermion compound CeB6 is probed by resonant inelastic soft X-ray scattering using photon energies across the Ce 3d and 4d absorption edges. The hybridization between the localized 4f orbitals and the delocalized valence-band states is studied by identifying the different spectral contributions from inelastic Raman scattering and normal fluorescence. Pronounced energy-loss structures are observed below the elastic peak at both the 3d and 4d thresholds. The origin and character of the inelastic scattering structures are discussed in terms of charge-transfer excitations in connection to the dipole allowed transitions with 4f character. Calculations within the single impurity Anderson model with full multiplet effects are found to yield consistent spectral functions to the experimental data.Comment: 9 pages, 4 figures, 1 table, http://link.aps.org/doi/10.1103/PhysRevB.63.07510

    Spectator and participator processes in the resonant photon-in and photon-out spectra at the Ce L

    No full text
    We study both theoretically and experimentally the photon-in and photon-out spectra of CeO2, which are caused by the Ce 2p to Ce 5d excitation followed by the three different de-excitation channels: (i) Ce 3d to Ce 2p (denoted by 3d-RXES), (ii) O 2p to Ce 2p (v-RXES), and (iii) Ce 5d to Ce 2p (RIXS). In 3d- and v-RXES, the 5d electron plays a role of a spectator, but in RIXS it is a participator. By extending our single impurity Anderson model (SIAM), which was used recently for our calculations of v- and 3d-RXES spectra of CeO2, we study the polarization dependence in the spectator and participator spectra, and we perform more detailed calculations for 3d- and v-RXES spectral features, as well as new calculations for the RIXS spectrum with charge transfer excitations. The polarization dependence is different for the spectator and participator spectra; we have no polarization correlation between the incident and emitted photons for the spectator spectra but a strong polarization correlation for the participator spectrum. The theoretical calculations predict that the charge transfer excitations in RIXS occur in the transfer-energy range overlapped with v-RXES, but the RIXS and v-RXES spectra can be discriminated by taking advantage of the different polarization dependence. The overlapped RIXS and v-RXES spectra are observed successfully by our experiments and well reproduced by our SIAM calculations
    corecore