370 research outputs found
Pre-clinical Evaluation of Novel Inorganic Compounds as Potential Anticancer Therapies
Background: Recent developments in our understanding of the biology of cancer has provided the opportunity to develop targeted agents with more specific pharmacological activity against cancer cells. Despite this shift toward targeted drug discovery, the much hoped-for paradigm shift in cancer treatment has not been realised. Tumour heterogeneity, plasticity and genomic instability are issues that contribute to this problem. One approach to circumvent these issues is to adopt a phenotypic based approach to drug evaluation where compounds with multiple mechanisms of action leading to a desirable phenotypic effect can be identified. The challenge with such an approach is to retain selectivity toward cancer cells as opposed to non-cancer cells.
Aims: The aim of this study is to apply a phenotype based drug evaluation program that incorporates a measure of selectivity to the preclinical evaluation of a series of novel organometallic complexes.
Methods: In this study, a series of novel inorganic complexes were evaluated against cancer and non-cancer cell lines. The primary evaluation procedures involved chemosensitivity testing with compounds being selected for further studies based upon (i) potency (ii) an in vitro selectivity index (SI) defined as the IC50 for non-cancer cells divided by the IC50 for cancer cells and (iii) comparable or improved properties than cisplatin, oxaliplatin and carboplatin with respect to potency and selectivity. Those compounds that met the selection criteria were evaluated further with the initial aim of characterising key pharmacological events such as cell cycle effects and induction of apoptosis.
Results and Discussion: Initial studies focused on the clinically approved platinum based with cisplatin and oxaliplatin being significantly more potent than carboplatin. Selectivity for cancer over non-cancer cells was observed with selectivity index (SI) values typically in the range of 0.85-9.71, 0.36-3.35 and 2.18-7.44 for cisplatin, oxaliplatin and carboplatin respectively. A total of 210 test compounds were evaluated in this thesis and of these, a total of 91 compounds exhibited potency values equal to or better than the platinates. In contrast however, only 64 compounds had superior SI values compared to platinates. Of these, the most promising compounds were a series of large molecular weight metallohelicates that exhibited potency (in the nM range) and SI values up to a maximum of 93 (nearly 28 times higher than the best performing platinum drug). Analysis of these compounds demonstrated that they do not induce apoptosis, but preliminary data suggests that they induce an autophagic death response.
Conclusions: The results of this study have demonstrated that a phenotypic based drug evaluation process based upon potency and selectivity in vitro is capable of identifying novel chemical entities with promising properties. This screen has more discriminatory power than potency alone and the concept of an 'in vitro selectivity index' has proved valuable in identifying a series of novel metallohelicate compounds as potential anti-cancer drugs. Significant further work is required to identify their mechanism(s) of action and pharmacological properties but their potential ability to induce autophagic cell death over apoptosis is of interest
Neutral and cationic half-sandwich arene ruthenium, Cp*Rh and Cp*Ir oximato and oxime complexes: Synthesis, structural, DFT and biological studies
The reaction of [(p-cymene)RuCl2]2 and [Cp*MCl2]2 (M = Rh/Ir) with chelating ligand 2-pyridylcyanoxime {pyC(CN)NOH} leads to the formation of neutral oximato complexes having the general formula [(arene)M{pyC(CN)NO}Cl] {arene = p-cymene, M = Ru, (1); Cp*, M = Rh (2);Cp*, M = Ir (3)}. Whereas the reaction of 2-pyridyl phenyloxime {pyC(Ph)NOH} and 2-thiazolyl methyloxime {tzC(Me)NOH} with precursor compounds afforded the cationic oxide complexes bearing formula [(arene)M{pyC(ph)NOH}Cl]+ and [(arene)M{tzC(Me)NOH}Cl]+{arene = p-cymene M = Ru, (4), (7); Cp*, M = Rh (5), (8); Cp*, M = Ir (6), (9)}. The cationic complexes were isolated as their hexafluorophosphate salts. All these complexes were fully characterized by analytical, spectroscopic and X-ray diffraction studies. The molecular structures of the complexes revealed typical piano stool geometry around the metal center within which the ligand acts as a NNʹ donor chelating ligand. The Chemo-sensitivity activities of the complexes evaluated against HT-29 (human colorectal cancer), and MIAPaCa-2 (human pancreatic cancer) cell line showed that the iridium-based complexes are much more potent than the ruthenium and rhodium analogues. Theoretical studies were carried out to have a deeper understanding about the charge distribution pattern and the various electronic transitions occurring in the complexes
The temporal dynamics of Arc expression regulate cognitive flexibility
YesNeuronal activity regulates the transcription and
translation of the immediate-early gene Arc/Arg3.1,
a key mediator of synaptic plasticity. Proteasomedependent
degradation of Arc tightly limits its
temporal expression, yet the significance of this
regulation remains unknown. We disrupted the temporal
control of Arc degradation by creating an Arc
knockin mouse (ArcKR) where the predominant Arc
ubiquitination sites were mutated. ArcKR mice had
intact spatial learning but showed specific deficits
in selecting an optimal strategy during reversal
learning. This cognitive inflexibility was coupled to
changes in Arc mRNA and protein expression resulting
in a reduced threshold to induce mGluR-LTD and
enhanced mGluR-LTD amplitude. These findings
show that the abnormal persistence of Arc protein
limits the dynamic range of Arc signaling pathways
specifically during reversal learning. Our work
illuminates how the precise temporal control of activity-dependent
molecules, such as Arc, regulates synaptic
plasticity and is crucial for cognition.Open access funded by Biotechnology and Biological Sciences Research Counci
Computational Nuclear Physics and Post Hartree-Fock Methods
We present a computational approach to infinite nuclear matter employing
Hartree-Fock theory, many-body perturbation theory and coupled cluster theory.
These lectures are closely linked with those of chapters 9, 10 and 11 and serve
as input for the correlation functions employed in Monte Carlo calculations in
chapter 9, the in-medium similarity renormalization group theory of dense
fermionic systems of chapter 10 and the Green's function approach in chapter
11. We provide extensive code examples and benchmark calculations, allowing
thereby an eventual reader to start writing her/his own codes. We start with an
object-oriented serial code and end with discussions on strategies for porting
the code to present and planned high-performance computing facilities.Comment: 82 pages, to appear in Lecture Notes in Physics (Springer), "An
advanced course in computational nuclear physics: Bridging the scales from
quarks to neutron stars", M. Hjorth-Jensen, M. P. Lombardo, U. van Kolck,
Editor
A study of charged kappa in
Based on events collected by BESII, the decay
is studied. In the invariant mass
spectrum recoiling against the charged , the charged
particle is found as a low mass enhancement. If a Breit-Wigner function of
constant width is used to parameterize the kappa, its pole locates at MeV/. Also in this channel,
the decay is observed for the first time.
Its branching ratio is .Comment: 14 pages, 4 figure
Measurement of the Hadronic Photon Structure Function F_2^gamma at LEP2
The hadronic structure function of the photon F_2^gamma is measured as a
function of Bjorken x and of the factorisation scale Q^2 using data taken by
the OPAL detector at LEP. Previous OPAL measurements of the x dependence of
F_2^gamma are extended to an average Q^2 of 767 GeV^2. The Q^2 evolution of
F_2^gamma is studied for average Q^2 between 11.9 and 1051 GeV^2. As predicted
by QCD, the data show positive scaling violations in F_2^gamma. Several
parameterisations of F_2^gamma are in agreement with the measurements whereas
the quark-parton model prediction fails to describe the data.Comment: 4 pages, 2 figures, to appear in the proceedings of Photon 2001,
Ascona, Switzerlan
A measurement of the tau mass and the first CPT test with tau leptons
We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV
using tau pairs from Z0 decays. To test CPT invariance we compare the masses of
the positively and negatively charged tau leptons. The relative mass difference
is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.
Measurement of the B0 Lifetime and Oscillation Frequency using B0->D*+l-v decays
The lifetime and oscillation frequency of the B0 meson has been measured
using B0->D*+l-v decays recorded on the Z0 peak with the OPAL detector at LEP.
The D*+ -> D0pi+ decays were reconstructed using an inclusive technique and the
production flavour of the B0 mesons was determined using a combination of tags
from the rest of the event. The results t_B0 = 1.541 +- 0.028 +- 0.023 ps, Dm_d
= 0.497 +- 0.024 +- 0.025 ps-1 were obtained, where in each case the first
error is statistical and the second systematic.Comment: 17 pages, 4 figures, submitted to Phys. Lett.
First Measurement of Z/gamma* Production in Compton Scattering of Quasi-real Photons
We report the first observation of Z/gamma* production in Compton scattering
of quasi-real photons. This is a subprocess of the reaction e+e- to
e+e-Z/gamma*, where one of the final state electrons is undetected.
Approximately 55 pb-1 of data collected in the year 1997 at an e+e-
centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been
analysed. The Z/gamma* from Compton scattering has been detected in the
hadronic decay channel. Within well defined kinematic bounds, we measure the
product of cross-section and Z/gamma* branching ratio to hadrons to be
(0.9+-0.3+-0.1) pb for events with a hadronic mass larger than 60 GeV,
dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60
GeV, dominated by (e)egamma* production, this product is found to be
(4.1+-1.6+-0.6) pb. Our results agree with the predictions of two Monte Carlo
event generators, grc4f and PYTHIA.Comment: 18 pages, LaTeX, 5 eps figures included, submitted to Physics Letters
- …