531 research outputs found

    Interpretation of three-dimensional structure from two-dimensional endovascular images: implications for educators in vascular surgery

    Get PDF
    AbstractPurposeEndovascular therapy has had a major effect on vascular surgery; surgeons perform tasks in three dimensions (3D) while viewing two-dimensional (2D) displays. This fundamental change in how surgeons perform operations has educational implications related to learning curves and patient safety. We studied the effects of experience, training, and visual-spatial ability on 3D perception of 2D angiographic images of abdominal aortic aneurysms (AAA).MethodsA novel computer-based method was developed to produce 3D depth maps based on subjects' interpretations of 2D images. Seven experts (certified vascular surgeons) and 20 novices (medical or surgical trainees) were presented with a 2D AAA angiographic image. With software specifically designed for this study, a depth map representing each subject's 3D interpretation of the 2D angiogram was produced. The novices were then randomized into a control group and a treatment group, who received a 5-minute AAA anatomy educational session. All subjects repeated the exercise on a second AAA image. Finally, all novices were given tests of visual-spatial ability, including the Surface Development Test and the Mental Rotations Test. Comparisons between experts and novices were made with depth map comparison, a subject's perception of overall object contour.ResultsThe depth maps were significantly different (depth map comparison, P < .001) between the expert and both novice groups for the first image. After the educational intervention, the control group and the treatment group exhibited significantly different depth maps (depth map comparison, P < .001), with treatment group depth maps more similar to those of the expert group. There were no significant correlations between the visual-spatial tests and the novice depth map comparison with the expert group.ConclusionsThis is the first study to examine perception of endovascular images in an educational context. Perception of overall surface contour of 3D structures from 2D angiographic images is affected by experience and training. With application of methods of vision science to an important problem in surgery, this research represents a first step in understanding the nature of visual perceptual processes involved in execution of an increasingly common clinical task. These results have implications for understanding and studying the endovascular learning curve.Clinical relevanceThis research represents a unique collaboration in an effort to understand and solve one of the greatest problems facing surgical educators and surgeons. This research uses applied tools in vision science to understand the perceptual constraints involved in minimally invasive surgery. Specifically, we examined the mental three-dimensional maps experts use when viewing two-dimensional displays. Furthermore, we compared experts with novices in an effort to assist surgical trainees

    Charge dynamics through pi-stacked arrays of conjugated molecules: effect of dynamic disorder in different transport/transfer regimes

    Full text link
    We provide further computational evidence that the electronic coupling between pi-stacked molecules is strongly modulated by the thermal motions at room temperature, not only in supramolecular flexible systems (like DNA) but also in molecular crystals. The effect of this modulation on the charge dynamics is different for different transfer/transport mechanisms and depends on the modulation timescale. In the case of charge transfer (CT) between a donor and an acceptor, the effect of electronic coupling fluctuations introduces a corrective term in the expression of the rate constant (different for adiabatic and non-adiabatic CT). For the transport in molecular crystals, this fluctuation can be the limiting factor for the charge mobility. Although the fluctuation of the electronic coupling is similar in magnitude for all systems containing molecular pi-stacking, its importance for the charge dynamics increases with the decrease of the reorganization energy

    Recent developments in planet migration theory

    Full text link
    Planetary migration is the process by which a forming planet undergoes a drift of its semi-major axis caused by the tidal interaction with its parent protoplanetary disc. One of the key quantities to assess the migration of embedded planets is the tidal torque between the disc and planet, which has two components: the Lindblad torque and the corotation torque. We review the latest results on both torque components for planets on circular orbits, with a special emphasis on the various processes that give rise to additional, large components of the corotation torque, and those contributing to the saturation of this torque. These additional components of the corotation torque could help address the shortcomings that have recently been exposed by models of planet population syntheses. We also review recent results concerning the migration of giant planets that carve gaps in the disc (type II migration) and the migration of sub-giant planets that open partial gaps in massive discs (type III migration).Comment: 52 pages, 18 figures. Review article to be published in "Tidal effects in Astronomy and Astrophysics", Lecture Notes in Physic

    Chemical Synthesis of PEDOT–Au Nanocomposite

    Get PDF
    In this work, gold-incorporated polyethylenedioxythiophene nanocomposite material has been synthesized chemically, employing reverse emulsion polymerization method. Infrared and Raman spectroscopic studies revealed that the polymerization of ethylenedioxythiophene leads to the formation of polymer polyethylenedioxythiophene incorporating gold nanoparticles. Scanning electron microscope studies showed the formation of polymer nanorods of 50–100 nm diameter and the X-ray diffraction analysis clearly indicates the presence of gold nanoparticles of 50 nm in size

    Immune-Related Gene Expression in Two B-Complex Disparate Genetically Inbred Fayoumi Chicken Lines Following Eimeria maxima Infection

    Get PDF
    To investigate the influence of genetic differences in the MHC on susceptibility to avian coccidiosis, M5.1 and M15.2 B-haplotype-disparate Fayoumi chickens were orally infected with live Eimeria maxima oocysts, and BW gain, fecal oocyst production, and expression of 14 immune-related genes were determined as parameters of protective immunity. Weight loss was reduced and fecal parasite numbers were lower in birds of the M5.1 line compared with M15.2 line birds. Intestinal intraepithelial lymphocytes from M5.1 chickens expressed greater levels of transcripts encoding interferon-γ (IFN-γ), interleukin-1β (IL-1β), IL-6, IL-8, IL-12, IL-15, IL-17A, inducible nitric oxide synthase, and lipopolysaccharide-induced tumor necrosis factor-α factor and lower levels of mRNA for IFN-α, IL-10, IL-17D, NK-lysin, and tumor necrosis factor superfamily 15 compared with the M15.2 line. In the spleen, E. maxima infection was associated with greater expression levels of IFN-γ, IL-15, and IL-8 and lower levels of IL-6, IL-17D, and IL-12 in M5.1 vs. M15.2 birds. These results suggest that genetic determinants within the chicken MHC influence resistance to E. maxima infection by controlling the local and systemic expression of immune-related cytokine and chemokine genes

    Measurement of Branching Fractions and Charge Asymmetries for Two-Body B Meson Decays with Charmonium

    Full text link
    We report branching fractions and charge asymmetries for exclusive decays of charged and neutral B mesons to two-body final states containing a charmonium meson, J/psi or psi(2S). This result is based on a 29.4 fb^{-1} data sample collected at the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric e+e- collider.Comment: 13 pages, 5 figures, revte

    Heavy Quarks and Heavy Quarkonia as Tests of Thermalization

    Full text link
    We present here a brief summary of new results on heavy quarks and heavy quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma Thermalization" Workshop in Vienna, Austria in August 2005, directly following the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop (Vienna August 2005) Proceeding

    Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV

    Get PDF
    The invariant differential cross section for inclusive electron production in p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4 <= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the inclusive electron spectrum from semileptonic decays of hadrons carrying heavy flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via three independent methods. The resulting electron spectrum from heavy flavor decays is compared to recent leading and next-to-leading order perturbative QCD calculations. The total cross section of charm quark-antiquark pair production is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Nuclear Modification of Electron Spectra and Implications for Heavy Quark Energy Loss in Au+Au Collisions at sqrt(s_NN)=200 GeV

    Get PDF
    The PHENIX experiment has measured mid-rapidity transverse momentum spectra (0.4 < p_T < 5.0 GeV/c) of electrons as a function of centrality in Au+Au collisions at sqrt(s_NN)=200 GeV. Contributions from photon conversions and from light hadron decays, mainly Dalitz decays of pi^0 and eta mesons, were removed. The resulting non-photonic electron spectra are primarily due to the semi-leptonic decays of hadrons carrying heavy quarks. Nuclear modification factors were determined by comparison to non-photonic electrons in p+p collisions. A significant suppression of electrons at high p_T is observed in central Au+Au collisions, indicating substantial energy loss of heavy quarks.Comment: 330 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Measurement of Transverse Single-Spin Asymmetries for Mid-rapidity Production of Neutral Pions and Charged Hadrons in Polarized p+p Collisions at sqrt(s) = 200 GeV

    Get PDF
    The transverse single-spin asymmetries of neutral pions and non-identified charged hadrons have been measured at mid-rapidity in polarized proton-proton collisions at sqrt(s) = 200 GeV. The data cover a transverse momentum (p_T) range 0.5-5.0 GeV/c for charged hadrons and 1.0-5.0 GeV/c for neutral pions, at a Feynman-x (x_F) value of approximately zero. The asymmetries seen in this previously unexplored kinematic region are consistent with zero within statistical errors of a few percent. In addition, the inclusive charged hadron cross section at mid-rapidity from 0.5 < p_T < 7.0 GeV/c is presented and compared to NLO pQCD calculations. Successful description of the unpolarized cross section above ~2 GeV/c using NLO pQCD suggests that pQCD is applicable in the interpretation of the asymmetry results in the relevant kinematic range.Comment: 331 authors, 6 pages text, 2 figures, 3 tables. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore