1,395 research outputs found
Comment on "Light-front Schwinger model at finite temperature"
In a recent paper by A. Das and X. Zhou [Phys. Rev. D 68, 065017 (2003)] it
is claimed that explicit evaluation of the thermal photon self-energy in the
Schwinger model gives off-shell thermal Green functions that are different in
light-front and conventional quantizations. We show that the claimed difference
originates from an erroneous simplification of the fermion propagator used in
the light-front calculation.Comment: 8 pages, revtex4, added section refuting the massless limit proposed
in hep-th/031102
Temperature dependent resistivity of spin-split subbands in GaAs 2D hole system
We calculate the temperature dependent resistivity in spin-split subbands
induced by the inversion asymmetry of the confining potential in GaAs 2D hole
systems. By considering both temperature dependent multisubband screening of
impurity disorder and hole-hole scattering we find that the strength of the
metallic behavior depends on the symmetry of the confining potential (i.e.,
spin-splitting) over a large range of hole density. At low density above the
metal-insulator transition we find that effective disorder reduces the
enhancement of the metallic behavior induced by spin-splitting. Our theory is
in good qualitative agreement with existing experiments
Negative specific heat in a thermodynamic model of multifragmentation
We consider a soluble model of multifragmentation which is similar in spirit
to many models which have been used to fit intermediate energy heavy ion
collision data. In this model is always positive but for finite nuclei
can be negative for some temperatures and pressures. Furthermore,
negative values of can be obtained in canonical treatment. One does not
need to use the microcanonical ensemble. Negative values for can persist
for systems as large as 200 paticles but this depends upon parameters used in
the model calculation. As expected, negative specific heats are absent in the
thermodynamic limit.Comment: Revtex, 13 pages including 6 figure
The Liquid-Gas Phase Transitions in a Multicomponent Nuclear System with Coulomb and Surface Effects
The liquid-gas phase transition is studied in a multi-component nuclear
system using a local Skyrme interaction with Coulomb and surface effects. Some
features are qualitatively the same as the results of Muller and Serot which
uses relativistic mean field without Coulomb and surface effects. Surface
tension brings the coexistance binodal surface to lower pressure. The Coulomb
interaction makes the binodal surface smaller and cause another pair of binodal
points at low pressure and large proton fraction with less protons in liquid
phase and more protons in gas phase.Comment: 20 pages including 7 postscript figure
The Super W_\INFTY Symmetry of the Manin-Radul Super KP Hierarchy
We show that the Manin-Radul super KP hierarchy is invariant under super
W_\infty transformations. These transformations are characterized by time
dependent flows which commute with the usual flows generated by the conserved
quantities of the super KP hierarchy.Comment: (12 pages
Effect of silicic acid and other silicon compounds on fungal growth in oligotrophic and nutrient-rich media
Mycelium grew from a spore-mycelial inoculum of Aspergillus oryzae added to ultra-pure water (upw) containing silicon compounds, but did not grow in upw alone. Growth of other fungi also occurred in upw only when silicon compounds were added. Increased growth of A. oryzae, and other fungi, also followed the addition of silicic acid and other silicon compounds to Czapek Dox. Aspergillus oryzae solubilized silicon compounds in both upw and nutrient-rich media. Although interactions between microorganisms and silicon have been generally neglected, the results show that silicon compounds can increase fungal growth under both oligotrophic and nutrient-rich conditions
Energy relaxation of an excited electron gas in quantum wires: many-body electron LO-phonon coupling
We theoretically study energy relaxation via LO-phonon emission in an excited
one-dimensional electron gas confined in a GaAs quantum wire structure. We find
that the inclusion of phonon renormalization effects in the theory extends the
LO-phonon dominated loss regime down to substantially lower temperatures. We
show that a simple plasmon-pole approximation works well for this problem, and
discuss implications of our results for low temperature electron heating
experiments in quantum wires.Comment: 10 pages, RevTex, 4 figures included. Also available at
http://www-cmg.physics.umd.edu/~lzheng
Model of multifragmentation, Equation of State and phase transition
We consider a soluble model of multifragmentation which is similar in spirit
to many models which have been used to fit intermediate energy heavy ion
collision data. We draw a p-V diagram for the model and compare with a p-V
diagram obtained from a mean-field theory. We investigate the question of
chemical instability in the multifragmentation model. Phase transitions in the
model are discussed.Comment: Revtex, 9 pages including 6 figures: some change in the text and Fig.
Statistical Models of Nuclear Fragmentation
A method is presented that allows exact calculations of fragment multiplicity
distributions for a canonical ensemble of non-interacting clusters.
Fragmentation properties are shown to depend on only a few parameters.
Fragments are shown to be copiously produced above the transition temperature.
At this transition temperature, the calculated multiplicity distributions
broaden and become strongly super-Poissonian. This behavior is compared to
predictions from a percolation model. A corresponding microcanonical formalism
is also presented.Comment: 12 pages, 5 figure
Metallicity and its low temperature behavior in dilute 2D carrier systems
We theoretically consider the temperature and density dependent transport
properties of semiconductor-based 2D carrier systems within the RPA-Boltzmann
transport theory, taking into account realistic screened charged impurity
scattering in the semiconductor. We derive a leading behavior in the transport
property, which is exact in the strict 2D approximation and provides a zeroth
order explanation for the strength of metallicity in various 2D carrier
systems. By carefully comparing the calculated full nonlinear temperature
dependence of electronic resistivity at low temperatures with the corresponding
asymptotic analytic form obtained in the limit, both within the
RPA screened charged impurity scattering theory, we critically discuss the
applicability of the linear temperature dependent correction to the low
temperature resistivity in 2D semiconductor structures. We find quite generally
that for charged ionized impurity scattering screened by the electronic
dielectric function (within RPA or its suitable generalizations including local
field corrections), the resistivity obeys the asymptotic linear form only in
the extreme low temperature limit of . We point out the
experimental implications of our findings and discuss in the context of the
screening theory the relative strengths of metallicity in different 2D systems.Comment: We have substantially revised this paper by adding new materials and
figures including a detailed comparison to a recent experimen
- …