52 research outputs found

    DC-SIMD: dynamic communication for SIMD processors

    Get PDF
    SIMD (single instruction multiple data)-type processors have been found very efficient in image processing applications, because their repetitive structure is able to exploit the huge amount of data-level parallelism in pixel-type operations, operating at a relatively low energy consumption rate. However, current SIMD architectures lack support for dynamic communication between processing elements, which is needed to efficiently map a set of non-linear algorithms. An architecture for dynamic communication support has been proposed, but this architecture needs large amounts of buffering to function properly. In this paper, three architectures supporting dynamic communication without the need of large amounts of buffering are presented, requiring 98% less buffer space. Cycle-true communication architecture simulators have been developed to accurately predict the performance of the different architectures. Simulations with several test algorithms have shown a performance improvement of up to 5x compared to a locally connected SIMD-processor. Also, detailed area models have been developed, estimating the three proposed architectures to have an area overhead of 30-70% compared to a locally connected SIMD architecture (like the IMAP). When memory is taken into account as well, the overhead is estimated to be 13-28%

    Amniotic membrane seeded with mesenchymal adipose-derived stem cell for coverage of wound in third degree burn: An experimental study

    Get PDF
    Methods: This study was experimental and has been done in Burn Research Center of Iran University of Medical Sciences during January 2012 to April 2013. Thirty rats randomly divided to three equal groups. Inguinal fat of 10 rats (one group) were used for preparation of autologous adipose-derived mesenchymal stem cells. Acellular amnion was used as a scaffold for stem cell transfer. Each of the thirty rats had been exposed to a cm deep 3rd degree burn on back area. 24 hours after surgery, the wound was excised and it had been covered by three methods: conventional dressing in the first group, acellular amnion in the second group and acellular amnion seeded with adipose-derived stem cell in the third group. The rate of wound healing and pathologic characteristics was compared in all three groups. Results: Healing rate and decrease in wounds size was significantly better in acellular amnion seeded with adipose- derived stem cells compared with other two groups at 3rd and 15th days after surgery P<0.01. Also in histopathology examination, fibroplasia and neovascularization of wounds were significantly better in stem cells group than the other two groups P<0.001. Conclusion: Acellular amnion seeded with adipose-derived stem cell can result in faster wound healing and better histopathology characteristic. The amnion as a scaffold and the fat derived stem cells as healing accelerator are recommended for coverage of the 3rd degree burn wounds after excision and it may reduce the need for skin graft. Background: Stem cells are applied in the treatment of wide range of diseases and can be separated from different tissues of the body. These cells can treat diseases by cytokine and growth factor secretion and also cell differentiation. Burn wound is a challenging problem of reconstructive surgery and stem cells may help wound healing process. We designed this study to evaluate the beneficial effect of fat derived stem cells for coverage of 3rd degree burn wound. © 2014, Tehran University of Medical Sciences (TUMS). All rights reserved

    ATHENA detector proposal — a totally hermetic electron nucleus apparatus proposed for IP6 at the Electron-Ion Collider

    Get PDF
    ATHENA has been designed as a general purpose detector capable of delivering the full scientific scope of the Electron-Ion Collider. Careful technology choices provide fine tracking and momentum resolution, high performance electromagnetic and hadronic calorimetry, hadron identification over a wide kinematic range, and near-complete hermeticity. This article describes the detector design and its expected performance in the most relevant physics channels. It includes an evaluation of detector technology choices, the technical challenges to realizing the detector and the R&D required to meet those challenges

    DC-SIMD: dynamic communication for SIMD processors

    No full text
    SIMD (single instruction multiple data)-type processors have been found very efficient in image processing applications, because their repetitive structure is able to exploit the huge amount of data-level parallelism in pixel-type operations, operating at a relatively low energy consumption rate. However, current SIMD architectures lack support for dynamic communication between processing elements, which is needed to efficiently map a set of non-linear algorithms. An architecture for dynamic communication support has been proposed, but this architecture needs large amounts of buffering to function properly. In this paper, three architectures supporting dynamic communication without the need of large amounts of buffering are presented, requiring 98% less buffer space. Cycle-true communication architecture simulators have been developed to accurately predict the performance of the different architectures. Simulations with several test algorithms have shown a performance improvement of up to 5x compared to a locally connected SIMD-processor. Also, detailed area models have been developed, estimating the three proposed architectures to have an area overhead of 30-70% compared to a locally connected SIMD architecture (like the IMAP). When memory is taken into account as well, the overhead is estimated to be 13-28%

    Sliding-Mode Control to Compensate PVT Variations in Dual Core Systems

    No full text
    In this paper, we present a novel robust sliding-mode controller for stabilizing supply voltage and clock frequency of dual core processors determined by dynamic voltage and frequency scaling (DVFS) methods in the presence of systematic and random variations. We show that maximum rejection for process, voltage and temperature (PVT) variations can be achieved by using the proposed sliding-mode controller. The stabilization of the presented controller is confirmed by the Lyapanov method. Experimental results demonstrate maximum 20% robustness against 20% parameter variations for a hardware of two core processors executing a JPEG decoding application

    Effect of Mn addition on the microstructure, mechanical, and corrosion properties of an extruded biodegradable Zn-0.2Mg alloy

    No full text
    In this study, the effect of Mn addition on microstructural evolution, mechanical properties, and biocorrosion behaviors of as-extruded Zn-0.2 Mg alloy as candidates for degradable biomaterials were investigated. The microstructural observations indicated that the addition of Mn element significantly refined α-Zn grains, and the average size decreased from 17.23 μm to 7.14 μm. Moreover, Mn-rich intermetallic precipitated alongside eutectic Mg2Zn11 phases. A result of electron backscattered diffraction indicated that manganese has caused grains to rotate 19°, facilitating the activation of non-basal slip as the Schmid factor increases. Mechanical test results showed that the yield strength (YS), ultimate tensile strength (UTS), and elongation (El) of Zn-0.2Mg-0.5Mn alloy is improved by 35.92%, 31.51%, and 6.65%, respectively, compared with Zn-0.2 Mg alloy. The main mechanisms responsible for the improvement of mechanical properties were higher volume fraction of the particles, grain refinement, texture modification, and deformation twining formed by Mn addition. The electrochemical test in SBF solution at human body temperature revealed that the corrosion rate of Mn-containing alloy increased from 0.664 mm/year to 0.87 mm/year compared to the base alloy. It is evident from these results that the Zn-0.2Mg-0.5Mn alloy has a great deal of potential as a cardiovascular stent material

    Effects of early versus delayed excision and grafting on the return of the burned hand function

    Get PDF
    Background: Despite a general consensus regarding the impacts of early excision and grafting (EE and G) of burned hand on the reducing of treatment cost and hospital stay, there are some controversial issues about its effect on the outcome of hand function. This study conducted to compare the results of the EE and G and delayed skin grafting in deep hand burns regarding the hand functional outcome. Materials and Methods: This study was conducted from April 2012 to November 2013 in sixty patients with deep thermal burns of the dorsal hand with total body surface area (TBSA) <20 who were admitted to special burn hospital. After standard primary burn care and resuscitation, necessary procedures (EE and G or more conservative treatment) were performed based on the patients� conditions. The patients were placed into early excision (No. =30) and delayed excision group (No. =30). Total active motion (TAM) of fingers, grip strength of the hand and the assessment of disabilities of the arm, shoulder and hand questionnaire, were measured in all patients 6 months after grafting. Results: The average percentage of TBSA in the EE and G group was more than the delayed excision group (17.34 ±5.12 vs. 15.64 ±5.83), this difference was not significant (P = 0.23). After 6 months, the average of the TAM and grip strength in the EE and G group was significantly more than that of the delayed group (P < 0.0001 and P = 0.019). Conclusion: The present study showed that EE and G with proper physical therapy and rehabilitation management provides a higher functional outcome in dorsal deep burned hand. © 2016 Journal of Research in Medical Sciences

    Lower power by voltage stacking: a fine-grained system design approach

    No full text
    Stacking voltage domains on top of each other is a design approach that is getting the attention of engineering communities due to the implicit high efficiency of the power delivery. Previous works have shown voltage stacking at the core level only. In this paper we present a more involved approach required to deploy voltage stacking not at the core level but at the IP level of a complex microcontroller. Our demonstrator chip features an ARM Cortex M0+ platform with an on-chip switched-capacitor voltage regulator. We chose to place the standard logic in one voltage domain between ground and VDD, and the memory "on top of it" between VDD and 2VDD, creating in this way a voltage stacked system. We further present silicon measurements that include a measured peak power efficiency in "stacked mode" of 96%

    Protective Effect of Ellagic Acid Against Sodium Arsenite-Induced Cardio- and Hematotoxicity in Rats

    No full text
    Ellagic acid (EA) is a phenolic constituent in certain fruits and nuts with wide range of biological activities, including potent antioxidant, antidiabetic, anti-inflammatory, anticancer and antimutagen properties. The aim of this study was to evaluate the effect of EA on sodium arsenic (SA)-induced cardio- and hematotoxicity in rats. Animals were divided into five groups. The first group was used as control. Group 2 was orally treated with sodium arsenite (SA, 10 mg/kg) for 21 days. Group 3 was orally treated with EA (30 mg/kg) for 14 days. Groups 4 and 5 were orally treated with SA for 7 days prior to EA (10 and 30 mg/kg, respectively) treatment and continued up to 21 days simultaneous with SA administration. Various biochemical, histological and molecular biomarkers were assessed in blood and heart. The results indicate that SA-intoxicated rats display significantly higher levels of plasma cardiac markers (AST, CK-MB, LDH and cTnI) than normal control animals. Moreover, an increase in MDA and NO with depletion of GSH and activities of CAT, SOD and GPx occurred in the heart of rats treated with SA. Furthermore, SA-treated rats showed significantly lower WBC, RBC, HGB, HCT and PLT and significantly higher MCV and MCH. Administration of EA (30 mg/kg) resulted in a significant reversal of hematological and cardiac markers in arsenic-intoxicated rats. These biochemical disturbances were supported by histopathological observations of the heart. In conclusion, the results of this study suggest that EA treatment exerts a significant protective effect on SA-induced cardio- and hematotoxicity. © 2018, Springer Science+Business Media, LLC, part of Springer Nature

    Protective Effect of Ellagic Acid Against Sodium Arsenite-Induced Cardio- and Hematotoxicity in Rats

    No full text
    Ellagic acid (EA) is a phenolic constituent in certain fruits and nuts with wide range of biological activities, including potent antioxidant, antidiabetic, anti-inflammatory, anticancer and antimutagen properties. The aim of this study was to evaluate the effect of EA on sodium arsenic (SA)-induced cardio- and hematotoxicity in rats. Animals were divided into five groups. The first group was used as control. Group 2 was orally treated with sodium arsenite (SA, 10 mg/kg) for 21 days. Group 3 was orally treated with EA (30 mg/kg) for 14 days. Groups 4 and 5 were orally treated with SA for 7 days prior to EA (10 and 30 mg/kg, respectively) treatment and continued up to 21 days simultaneous with SA administration. Various biochemical, histological and molecular biomarkers were assessed in blood and heart. The results indicate that SA-intoxicated rats display significantly higher levels of plasma cardiac markers (AST, CK-MB, LDH and cTnI) than normal control animals. Moreover, an increase in MDA and NO with depletion of GSH and activities of CAT, SOD and GPx occurred in the heart of rats treated with SA. Furthermore, SA-treated rats showed significantly lower WBC, RBC, HGB, HCT and PLT and significantly higher MCV and MCH. Administration of EA (30 mg/kg) resulted in a significant reversal of hematological and cardiac markers in arsenic-intoxicated rats. These biochemical disturbances were supported by histopathological observations of the heart. In conclusion, the results of this study suggest that EA treatment exerts a significant protective effect on SA-induced cardio- and hematotoxicity. © 2018, Springer Science+Business Media, LLC, part of Springer Nature
    corecore