113 research outputs found

    Slow Switching in Globally Coupled Oscillators: Robustness and Occurrence through Delayed Coupling

    Get PDF
    The phenomenon of slow switching in populations of globally coupled oscillators is discussed. This characteristic collective dynamics, which was first discovered in a particular class of the phase oscillator model, is a result of the formation of a heteroclinic loop connecting a pair of clustered states of the population. We argue that the same behavior can arise in a wider class of oscillator models with the amplitude degree of freedom. We also argue how such heteroclinic loops arise inevitably and persist robustly in a homogeneous population of globally coupled oscillators. Although the heteroclinic loop might seem to arise only exceptionally, we find that it appears rather easily by introducing the time-delay in the population which would otherwise exhibit perfect phase synchrony. We argue that the appearance of the heteroclinic loop induced by the delayed coupling is then characterized by transcritical and saddle-node bifurcations. Slow switching arises when the system with a heteroclinic loop is weakly perturbed. This will be demonstrated with a vector model by applying weak noises. Other types of weak symmetry-breaking perturbations can also cause slow switching.Comment: 10 pages, 14 figures, RevTex, twocolumn, to appear in Phys. Rev.

    Synchronization in a System of Globally Coupled Oscillators with Time Delay

    Full text link
    We study the synchronization phenomena in a system of globally coupled oscillators with time delay in the coupling. The self-consistency equations for the order parameter are derived, which depend explicitly on the amount of delay. Analysis of these equations reveals that the system in general exhibits discontinuous transitions in addition to the usual continuous transition, between the incoherent state and a multitude of coherent states with different synchronization frequencies. In particular, the phase diagram is obtained on the plane of the coupling strength and the delay time, and ubiquity of multistability as well as suppression of the synchronization frequency is manifested. Numerical simulations are also performed to give consistent results

    Collective behavior of "electronic fireflies"

    Full text link
    A simple system composed of electronic oscillators capable of emitting and detecting light-pulses is studied. The oscillators are biologically inspired, their behavior is designed for keeping a desired light intensity, W, in the system. From another perspective, the system behaves like modified integrate and fire type neurons that are pulse-coupled with inhibitory type interactions: the firing of one oscillator delays the firing of all the others. Experimental and computational studies reveal that although no driving force favoring synchronization is considered, for a given interval of W phase-locking appears. This weak synchronization is sometimes accompanied by complex dynamical patterns in the flashing sequence of the oscillators.Comment: 4 pages, 4 figures include

    Helminth infection reactivates latent γ-herpesvirus via cytokine competition at a viral promoter

    Get PDF
    Mammals are coinfected by multiple pathogens that interact through unknown mechanisms. We found that helminth infection, characterized by the induction of the cytokine interleukin-4 (IL-4) and the activation of the transcription factor Stat6, reactivated murine γ-herpesvirus infection in vivo. IL-4 promoted viral replication and blocked the antiviral effects of interferon-γ (IFNγ) by inducing Stat6 binding to the promoter for an important viral transcriptional transactivator. IL-4 also reactivated human Kaposi's sarcoma-associated herpesvirus from latency in cultured cells. Exogenous IL-4 plus blockade of IFNγ reactivated latent murine γ-herpesvirus infection in vivo, suggesting a "two-signal" model for viral reactivation. Thus, chronic herpesvirus infection, a component of the mammalian virome, is regulated by the counterpoised actions of multiple cytokines on viral promoters that have evolved to sense host immune status

    Synchronization and resonance in a driven system of coupled oscillators

    Full text link
    We study the noise effects in a driven system of globally coupled oscillators, with particular attention to the interplay between driving and noise. The self-consistency equation for the order parameter, which measures the collective synchronization of the system, is derived; it is found that the total order parameter decreases monotonically with noise, indicating overall suppression of synchronization. Still, for large coupling strengths, there exists an optimal noise level at which the periodic (ac) component of the order parameter reaches its maximum. The response of the phase velocity is also examined and found to display resonance behavior.Comment: 17 pages, 3 figure

    Phase synchronization and noise-induced resonance in systems of coupled oscillators

    Full text link
    We study synchronization and noise-induced resonance phenomena in systems of globally coupled oscillators, each possessing finite inertia. The behavior of the order parameter, which measures collective synchronization of the system, is investigated as the noise level and the coupling strength are varied, and hysteretic behavior is manifested. The power spectrum of the phase velocity is also examined and the quality factor as well as the response function is obtained to reveal noise-induced resonance behavior.Comment: to be published in Phys. Rev.

    100 ancient genomes show repeated population turnovers in Neolithic Denmark.

    Get PDF
    Major migration events in Holocene Eurasia have been characterized genetically at broad regional scales <sup>1-4</sup> . However, insights into the population dynamics in the contact zones are hampered by a lack of ancient genomic data sampled at high spatiotemporal resolution <sup>5-7</sup> . Here, to address this, we analysed shotgun-sequenced genomes from 100 skeletons spanning 7,300 years of the Mesolithic period, Neolithic period and Early Bronze Age in Denmark and integrated these with proxies for diet ( <sup>13</sup> C and <sup>15</sup> N content), mobility ( <sup>87</sup> Sr/ <sup>86</sup> Sr ratio) and vegetation cover (pollen). We observe that Danish Mesolithic individuals of the Maglemose, Kongemose and Ertebølle cultures form a distinct genetic cluster related to other Western European hunter-gatherers. Despite shifts in material culture they displayed genetic homogeneity from around 10,500 to 5,900 calibrated years before present, when Neolithic farmers with Anatolian-derived ancestry arrived. Although the Neolithic transition was delayed by more than a millennium relative to Central Europe, it was very abrupt and resulted in a population turnover with limited genetic contribution from local hunter-gatherers. The succeeding Neolithic population, associated with the Funnel Beaker culture, persisted for only about 1,000 years before immigrants with eastern Steppe-derived ancestry arrived. This second and equally rapid population replacement gave rise to the Single Grave culture with an ancestry profile more similar to present-day Danes. In our multiproxy dataset, these major demographic events are manifested as parallel shifts in genotype, phenotype, diet and land use

    The satisfactory growth and development at 2 years of age of the INTERGROWTH-21st Fetal Growth Standards cohort support its appropriateness for constructing international standards.

    Get PDF
    BACKGROUND: The World Health Organization recommends that human growth should be monitored with the use of international standards. However, in obstetric practice, we continue to monitor fetal growth using numerous local charts or equations that are based on different populations for each body structure. Consistent with World Health Organization recommendations, the INTERGROWTH-21st Project has produced the first set of international standards to date pregnancies; to monitor fetal growth, estimated fetal weight, Doppler measures, and brain structures; to measure uterine growth, maternal nutrition, newborn infant size, and body composition; and to assess the postnatal growth of preterm babies. All these standards are based on the same healthy pregnancy cohort. Recognizing the importance of demonstrating that, postnatally, this cohort still adhered to the World Health Organization prescriptive approach, we followed their growth and development to the key milestone of 2 years of age. OBJECTIVE: The purpose of this study was to determine whether the babies in the INTERGROWTH-21st Project maintained optimal growth and development in childhood. STUDY DESIGN: In the Infant Follow-up Study of the INTERGROWTH-21st Project, we evaluated postnatal growth, nutrition, morbidity, and motor development up to 2 years of age in the children who contributed data to the construction of the international fetal growth, newborn infant size and body composition at birth, and preterm postnatal growth standards. Clinical care, feeding practices, anthropometric measures, and assessment of morbidity were standardized across study sites and documented at 1 and 2 years of age. Weight, length, and head circumference age- and sex-specific z-scores and percentiles and motor development milestones were estimated with the use of the World Health Organization Child Growth Standards and World Health Organization milestone distributions, respectively. For the preterm infants, corrected age was used. Variance components analysis was used to estimate the percentage variability among individuals within a study site compared with that among study sites. RESULTS: There were 3711 eligible singleton live births; 3042 children (82%) were evaluated at 2 years of age. There were no substantive differences between the included group and the lost-to-follow up group. Infant mortality rate was 3 per 1000; neonatal mortality rate was 1.6 per 1000. At the 2-year visit, the children included in the INTERGROWTH-21st Fetal Growth Standards were at the 49th percentile for length, 50th percentile for head circumference, and 58th percentile for weight of the World Health Organization Child Growth Standards. Similar results were seen for the preterm subgroup that was included in the INTERGROWTH-21st Preterm Postnatal Growth Standards. The cohort overlapped between the 3rd and 97th percentiles of the World Health Organization motor development milestones. We estimated that the variance among study sites explains only 5.5% of the total variability in the length of the children between birth and 2 years of age, although the variance among individuals within a study site explains 42.9% (ie, 8 times the amount explained by the variation among sites). An increase of 8.9 cm in adult height over mean parental height is estimated to occur in the cohort from low-middle income countries, provided that children continue to have adequate health, environmental, and nutritional conditions. CONCLUSION: The cohort enrolled in the INTERGROWTH-21st standards remained healthy with adequate growth and motor development up to 2 years of age, which supports its appropriateness for the construction of international fetal and preterm postnatal growth standards

    Population genomics of post-glacial western Eurasia.

    Get PDF
    Western Eurasia witnessed several large-scale human migrations during the Holocene <sup>1-5</sup> . Here, to investigate the cross-continental effects of these migrations, we shotgun-sequenced 317 genomes-mainly from the Mesolithic and Neolithic periods-from across northern and western Eurasia. These were imputed alongside published data to obtain diploid genotypes from more than 1,600 ancient humans. Our analyses revealed a 'great divide' genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers were highly genetically differentiated east and west of this zone, and the effect of the neolithization was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacement of hunter-gatherers in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, whereas, east of the Urals, relatedness remained high until around 4,000 BP, consistent with the persistence of localized groups of hunter-gatherers. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 BP, resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive, but we show that hunter-gatherers from the Middle Don region contributed ancestry to them. Yamnaya groups later admixed with individuals associated with the Globular Amphora culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a 'Neolithic steppe' cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations
    corecore