472 research outputs found
Metallothionein as an indicator of water quality: assessment of the bioavailability of cadmium, copper, mercury and zinc in aquatic animals at the cellular level
The study of metallothioneins (MTs) has greatly improved our understanding of body burdens, metal storage and detoxification in aquatic organisms subjected to contamination by the toxic heavy metals, Cd, Cu, Hg and Zn. These studies have shown that in certain organisms MT status can be used to assess impact of these metals at the cellular level and, whilst validation is currently limited to a few examples, this stress response may be linked to higher levels of organisation, thus indicating its potential for environmental quality assessment. Molluscs, such as Mytilus spp., and several commonly occurring teleost species, are the most promising of the indicator species tested. Natural variability of MT levels caused by the organism's size, condition, age, position in the sexual cycle, temperature and various stressors, can lead to difficulties in interpretation of field data as a definitive response-indicator of metal contamination unless a critical appraisal of these variables is available. From laboratory and field studies these data are almost complete for teleost fish. Whilst for molluscs much of this information is lacking, when suitable controls are utilised and MT measurements are combined with observations of metal partitioning, current studies indicate that they are nevertheless a powerful tool in the interpretation of impact, and may prove useful in water quality assessment
Molecular biomarkers and toxic consequences of impact by organic pollution in aquatic organisms
Organic contaminants are readily bioaccumulated by aquatic organisms. Exposure to and toxic effects of contaminants can be measured in terms of the biochemical responses of the organisms (i.e. molecular biomarkers). The hepatic biotransformation enzyme cytochrome P4501A (CYP1A) in vertebrates is specifically induced by organic contaminants such as aromatic hydrocarbons, PCBs and dioxins, and is involved in chemical carcinogenesis via catalysis of the covalent binding of organic contaminants to DNA (DNA-adducts). Hepatic CYP1A induction has been used extensively and successfully as a biomarker of organic contaminant exposure in fish. Fewer but equally encouraging studies in fish have used hepatic bulky, hydrophobic DNA-adducts as biomarkers of organic contaminant damage. Much less is known of the situation in marine invertebrates, but a CYPlA-like enzyme with limited inducibility and some potential for biomarker application is indicated. Stimulation of reactive oxygen species (ROS) production is another potential mechanism of organic contaminant-mediated DNA and other damage in aquatic organisms. A combination of antioxidant (enzymes, scavengers) and pro-oxidant (oxidised DNA bases, lipid peroxidation) measurements may have potential as a biomarker of organic contaminant exposure (particularly those chemicals which do not induce CYP1A) and/or oxidative stress, but more studies are required. Both CYP1A- and ROS-mediated toxicity are indicated to result in higher order deleterious effects, including cancer and other aspects of animal fitness
Legal and ethical requirements for developing a medical MOOC: Lessons learnt from the Paediatric Physical Examination Skills MOOC
Massive open online courses (MOOCs) are increasingly being integrated into medical education. The production of a MOOC demonstrating physical examinations of children raised the issue of legal and ethical consent for the use of images and video-recordings of children. The present article shares the valuable lessons we learned around the legal and ethical consent required, and the operational issues that will be essential to comply with these legal and ethical considerations. This information may be valuable to other educators, especially those in similar resource-constrained settings,who are planning to create medical MOOCs
Determination of Li-6 -- He-4 interaction from multi-energy scattering data
We present the first successful potential model description of Li-6 -- He-4
scattering. The differential cross-sections for three energies and the vector
analyzing powers for two energies were fitted by a single potential with energy
dependent imaginary components. An essential ingredient is a set of Majorana
terms in each component. The potential was determined using a recently
developed direct data-to-potential inversion method which is a generalisation
of the IP S-matrix-to-potential inversion algorithm. We discuss the problems
related to this phenomenological approach, and discuss the relationship of our
results to existing and future theories.Comment: 9 pages plain LaTeX, 6 postscript figue
Search for Possible Variation of the Fine Structure Constant
Determination of the fine structure constant alpha and search for its
possible variation are considered. We focus on a role of the fine structure
constant in modern physics and discuss precision tests of quantum
electrodynamics. Different methods of a search for possible variations of
fundamental constants are compared and those related to optical measurements
are considered in detail.Comment: An invited talk at HYPER symposium (Paris, 2002
Double-Logarithmic Two-Loop Self-Energy Corrections to the Lamb Shift
Self-energy corrections involving logarithms of the parameter Zalpha can
often be derived within a simplified approach, avoiding calculational
difficulties typical of the problematic non-logarithmic corrections (as
customary in bound-state quantum electrodynamics, we denote by Z the nuclear
charge number, and by alpha the fine-structure constant). For some logarithmic
corrections, it is sufficient to consider internal properties of the electron
characterized by form factors. We provide a detailed derivation of related
self-energy ``potentials'' that give rise to the logarithmic corrections; these
potentials are local in coordinate space. We focus on the double-logarithmic
two-loop coefficient B_62 for P states and states with higher angular momenta
in hydrogenlike systems. We complement the discussion by a systematic
derivation of B_62 based on nonrelativistic quantum electrodynamics (NRQED). In
particular, we find that an additional double logarithm generated by the
loop-after-loop diagram cancels when the entire gauge-invariant set of two-loop
self-energy diagrams is considered. This double logarithm is not contained in
the effective-potential approach.Comment: 14 pages, 1 figure; references added and typographical errors
corrected; to appear in Phys. Rev.
Study of the fire performance of hybrid steel-timber connections with full-scale tests and finite element modelling
Connection design is critical in timber buildings since the connections tend to have lower strength than the structural members themselves and they tend to fail in a brittle manner. The effect of connection geometry on the fire performance of a hybrid steel-timber shear connection is investigated by full-scale testing. These tests were conducted by exposing the test specimens to the standard time-temperature curve defined by CAN/ULC-S101 (CAN/ULC-S101, 2007)
Individual variability in cardiac biomarker release after 30 min of high-intensity rowing in elite and amateur athletes
This study had two objectives: (i) to examine individual variation in the pattern of cardiac troponin I (cTnI) and N-terminal pro-brain natriuretic peptide (NT-proBNP) release in response to high-intensity rowing exercise, and (ii) to establish whether individual heterogeneity in biomarker appearance was influenced by athletic status (elite vs. amateur). We examined cTnI and NT-proBNP in 18 elite and 14 amateur rowers before and 5 min, 1, 3, 6, 12, and 24 h after a 30-min maximal rowing test. Compared with pre-exercise levels, peak postexercise cTnI (pre: 0.014 ± 0.030 μg·L–1; peak post: 0.058 ± 0.091 μg·L–1; p = 0.000) and NT-proBNP (pre: 15 ± 11 ng·L–1; peak post: 31 ± 19 ng·L–1; p = 0.000) were elevated. Substantial individual heterogeneity in peak and time-course data was noted for cTnI. Peak cTnI exceeded the upper reference limit (URL) in 9 elite and 3 amateur rowers. No rower exceeded the URL for NT-proBNP. Elite rowers had higher baseline (0.019 ± 0.038 vs. 0.008 ± 0.015 μg·L–1; p = 0.003) and peak postexercise cTnI (0.080 ± 0.115 vs. 0.030 ± 0.029 μg·L–1; p = 0.022) than amateur rowers, but the change with exercise was similar between groups. There were no significant differences in baseline and peak postexercise NT-proBNP between groups. In summary, marked individuality in the cTnI response to a short but high-intensity rowing bout was observed. Athletic status did not seem to affect the change in cardiac biomarkers in response to high-intensity exercise
Anti-schistosomal activities of quinoxaline-containing compounds:From hit identification to lead optimisation
Schistosomiasis is a neglected disease of poverty that is caused by infection with blood fluke species contained within the genus Schistosoma. For the last 40 years, control of schistosomiasis in endemic regions has predominantly been facilitated by administration of a single drug, praziquantel. Due to limitations in this mono-chemotherapeutic approach for sustaining schistosomiasis control into the future, alternative anti-schistosomal compounds are increasingly being sought by the drug discovery community. Herein, we describe a multi-pronged, integrated strategy that led to the identification and further exploration of the quinoxaline core as a promising anti-schistosomal scaffold
Identified particles in Au+Au collisions at sqrt{s_NN} = 200 GeV
The yields of identified particles have been measured at RHIC for Au+Au
collisions at sqrt{s_NN} = 200 GeV using the PHOBOS spectrometer. The ratios of
antiparticle to particle yields near mid-rapidity are presented. The first
measurements of the invariant yields of charged pions, kaons and protons at
very low transverse momenta are also shown.Comment: 4 pages, 4 figures, Contribution to Quark Matter 2002, Nantes,
France, July 200
- …