581 research outputs found

    Medication safety in patients with hepatic impairment: A survey of community pharmacists’ knowledge level and their practice in caring for these patients

    Get PDF
    Aims: To study community pharmacists' level of knowledge on medication safety in patients with hepatic impairment and their practice in caring for these patients. Methods: Pharmacists from Dutch community pharmacies (n = 1545) were invited to participate in an online survey. The survey consisted of 27 questions covering 2 main topics: knowledge and current practice. The level of knowledge was measured by a 6-item knowledge test. Multiple linear regression was used to identify predictors of correctly answered responses. Results: In total, 338 pharmacists (22%) completed the questionnaire. The mean knowledge score was 2.8 (standard deviation 1.6). Only 30.3% of respondents were able to appropriately advise on use of analgesics in severe cirrhosis. Postgraduate education on hepatic impairment, knowledge of recently developed practical guidance, and fewer years of practice were associated with a higher level of knowledge. In total, 70.4% indicated to evaluate medication safety in a patient with hepatic impairment at least once weekly. In the past 6 months, 83.3% of respondents consulted a prescriber about a patient with hepatic impairment. Frequently encountered barriers in practice were insufficient knowledge on the topic and a lack of essential patient information (i.e. diagnosis and severity of the impairment). Conclusion: Community pharmacists regularly evaluate the safety of medication in patients with hepatic impairment, yet their level of knowledge was insufficient and additional education is needed. Pharmacists experienced several difficulties in providing pharmaceutical care. If these issues are resolved, pharmacists can play a more active role in ensuring medication safety in their patients with hepatic impairment

    Effects of azimuth-symmetric acceptance cutoffs on the measured asymmetry in unpolarized Drell-Yan fixed target experiments

    Get PDF
    Fixed-target unpolarized Drell-Yan experiments often feature an acceptance depending on the polar angle of the lepton tracks in the laboratory frame. Typically leptons are detected in a defined angular range, with a dead zone in the forward region. If the cutoffs imposed by the angular acceptance are independent of the azimuth, at first sight they do not appear dangerous for a measurement of the cos(2\phi)-asymmetry, relevant because of its association with the violation of the Lam-Tung rule and with the Boer-Mulders function. On the contrary, direct simulations show that up to 10 percent asymmetries are produced by these cutoffs. These artificial asymmetries present qualitative features that allow them to mimic the physical ones. They introduce some model-dependence in the measurements of the cos(2\phi)-asymmetry, since a precise reconstruction of the acceptance in the Collins-Soper frame requires a Monte Carlo simulation, that in turn requires some detailed physical input to generate event distributions. Although experiments in the eighties seem to have been aware of this problem, the possibility of using the Boer-Mulders function as an input parameter in the extraction of Transversity has much increased the requirements of precision on this measurement. Our simulations show that the safest approach to these measurements is a strong cutoff on the Collins-Soper polar angle. This reduces statistics, but does not necessarily decrease the precision in a measurement of the Boer-Mulders function.Comment: 13 pages, 14 figure

    Membrane paradigm realized?

    Full text link
    Are there any degrees of freedom on the black hole horizon? Using the `membrane paradigm' we can reproduce coarse-grained physics outside the hole by assuming a fictitious membrane just outside the horizon. But to solve the information puzzle we need `real' degrees of freedom at the horizon, which can modify Hawking's evolution of quantum modes. We argue that recent results on gravitational microstates imply a set of real degrees of freedom just outside the horizon; the state of the hole is a linear combination of rapidly oscillating gravitational solutions with support concentrated just outside the horizon radius. The collective behavior of these microstate solutions may give a realization of the membrane paradigm, with the fictitious membrane now replaced by real, explicit degrees of freedom.Comment: 8 pages, Latex, 3 figures (Essay given second place in Gravity Research Foundation essay competition 2010

    Drag and jet quenching of heavy quarks in a strongly coupled N=2* plasma

    Full text link
    The drag of a heavy quark and the jet quenching parameter are studied in the strongly coupled N=2* plasma using the AdS/CFT correspondence. Both increase in units of the spatial string tension as the theory departs from conformal invariance. The description of heavy quark dynamics using a Langevin equation is also considered. It is found that the difference between the velocity dependent factors of the transverse and longitudinal momentum broadening of the quark admit an interpretation in terms of relativistic effects, so the distribution is spherical in the quark rest frame. When conformal invariance is broken there is a broadening of the longitudinal momentum distribution. This effect may be useful in understanding the jet distribution observed in experiments.Comment: 30 pages, 5 figures, references added, minor corrections. To be published in JHE

    Superradiance of low density Frenkel excitons in a crystal slab of three-level atoms: Quantum interference effect

    Full text link
    We systematically study the fluorescence of low density Frenkel excitons in a crystal slab containing NTN_T V-type three-level atoms. Based on symmetric quasi-spin realization of SU(3) in large NN limit, the two-mode exciton operators are invoked to depict various collective excitations of the collection of these V-type atoms starting from their ground state. By making use of the rotating wave approximation, the light intensity of radiation for the single lattice layer is investigated in detail. As a quantum coherence effect, the quantum beat phenomenon is discussed in detail for different initial excitonic states. We also test the above results analytically without the consideration of the rotating wave approximation and the self-interaction of radiance field is also included.Comment: 18pages, 17 figures. Resubmit to Phys. Rev.

    E-diary use in clinical headache practice: a prospective observational study

    Get PDF
    Aim To determine whether our E-diary can be used to diagnose migraine and provide more reliable migraine-related frequency numbers compared to patients’ self-reported estimates. Methods We introduced a self-developed E-diary including automated algorithms differentiating headache and migraine days, indicating whether a patient has migraine. Reliability of the E-diary diagnosis in combination with two previously validated E-questionnaires was compared to a physician’s diagnosis as gold standard in headache patients referred to the Leiden Headache Clinic (n = 596). In a subset of patients with migraine (n = 484), self-estimated migraine-related frequencies were compared to diary-based results. Results The first migraine screening approach including an E-headache questionnaire, and the E-diary revealed a sensitivity of 98% and specificity of 17%. In the second approach, an E-migraine questionnaire was added, resulting in a sensitivity of 79% and specificity of 69%. Mean self-estimated monthly migraine days, non-migrainous headache days and days with acute medication use were different from E-diary-based results (absolute mean difference ± standard deviation respectively 4.7 ± 5.0, 6.2 ± 6.6 and 4.3 ± 4.8). Conclusion The E-diary including algorithms differentiating headache and migraine days showed usefulness in diagnosing migraine. The use emphasised the need for E-diaries to obtain reliable information, as patients do not reliably recall numbers of migraine days and acute medication intake. Adding E-diaries will be helpful in future headache telemedicine.Development and application of statistical models for medical scientific researc

    Dark Matter Direct Detection Signals inferred from a Cosmological N-body Simulation with Baryons

    Full text link
    We extract at redshift z=0 a Milky Way sized object including gas, stars and dark matter (DM) from a recent, high-resolution cosmological N-body simulation with baryons. Its resolution is sufficient to witness the formation of a rotating disk and bulge at the center of the halo potential. The phase-space structure of the central galactic halo reveals the presence of a dark disk component, that is co-rotating with the stellar disk. At the Earth's location, it contributes to around 25% of the total DM local density, whose value is rho_DM ~ 0.37 GeV/cm^3. The velocity distributions also show strong deviations from pure Gaussian and Maxwellian distributions, with a sharper drop of the high velocity tail. We give a detailed study of the impact of these features on the predictions for DM signals in direct detection experiments. In particular, the question of whether the modulation signal observed by DAMA is or is not excluded by limits set by other experiments (CDMS, XENON and CRESST...) is re-analyzed and compared to the case of a standard Maxwellian halo, in both the elastic and the inelastic scattering scenarios. We find that the compatibility between DAMA and the other experiments is improved. In the elastic scenario, the DAMA modulation signal is slightly enhanced in the so-called channeling region, as a result of several effects. For the inelastic scenario, the improvement of the fit is mainly attributable to the departure from a Maxwellian distribution at high velocity.Comment: 39 page

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.

    Emission from the D1D5 CFT

    Full text link
    It is believed that the D1D5 brane system is described by an 'orbifold CFT' at a special point in moduli space. We first develop a general formulation relating amplitudes in a d-dimensional CFT to absorption/emission of quanta from flat infinity. We then construct the D1D5 vertex operators for minimally coupled scalars in supergravity, and use these to compute the CFT amplitude for emission from a state carrying a single excitation. Using spectral flow we relate this process to one where we have emission from a highly excited initial state. In each case the radiation rate is found to agree with the radiation found in the gravity dual.Comment: 49 pages, latex, 6 figures; v2: reformatted for JHEP, corrected typos, and added reference

    What we don't know about time

    Full text link
    String theory has transformed our understanding of geometry, topology and spacetime. Thus, for this special issue of Foundations of Physics commemorating "Forty Years of String Theory", it seems appropriate to step back and ask what we do not understand. As I will discuss, time remains the least understood concept in physical theory. While we have made significant progress in understanding space, our understanding of time has not progressed much beyond the level of a century ago when Einstein introduced the idea of space-time as a combined entity. Thus, I will raise a series of open questions about time, and will review some of the progress that has been made as a roadmap for the future.Comment: 15 pages; Essay for a special issue of Foundations of Physics commemorating "Forty years of string theory
    • …
    corecore